Synthesis of Optically Active 5-(tert-Butyldimethylsiloxy)-2-cyclohexenone and Its 6-Substituted Derivatives as Useful Chiral Building Blocks for the Synthesis of Cyclohexane Rings. Syntheses of Carvone, Penienone, and Penihydrone

Georges P-J. Hareau, Masakazu Koiwa, Shinichi Hikichi, and Fumie Sato*
Contribution from the Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan

Received December 14, 1998

Abstract

Optically active 5-(tert-butyldimethylsiloxy)-2-cyclohexenone (1) and its 6-substituted derivatives 2a,b were synthesized from the readily available optically active ethyl 3-(tert-butyldimethylsiloxy)-5-hexenoate (4), where the $\mathrm{Ti}(\mathrm{II})$-mediated intramolecular nucleophilic acyl substitution reaction and the FeCl_{3}-mediated ring expansion reaction of a 1-hydroxybicyclo[3.1.0]hexane are the key reactions. The enone 1 reacted with higher-order cyanocuprates with excellent diastereoselectivity to afford the trans-addition products, trans-13, in excellent yields. The reaction of $\mathbf{1}$ with lower-order cyanocuprates proceeded with moderate to excellent syn-selectivity to afford cis-13. Treatment of trans- and cis- $\mathbf{1 3}$ with DBU (1,8-diazabicyclo[5.4.0]undec-7ene) or catalyst p-TSA (p-toluenesulfonic acid) resulted in a β-elimination reaction to furnish the corresponding optically active 5 -substituted-2-cyclohexenones $\mathbf{1 4}$. The 1,4 -addition reaction of $\mathbf{2 a}$ and $\mathbf{2 b}$ with organocyanocuprates followed by treatment of the resulting $\mathbf{2 0}$ with DBU provided the 2,5 -disubstituted-2-cyclohexenones $\mathbf{1 9}$ with excellent ee. The conversion of $\mathbf{1 4}$ into the 3,5-disubstituted-2-cyclohexenone $\mathbf{2 2}$ has also been carried out via 1,2-addition of alkyllithium onto the carbonyl group and the following oxidation with PCC (pyridinium chlorochromate). Similarly, the conversion of 19 into 2,3,5-trisubstituted-2-cyclohexenones $\mathbf{2 4}$ has been carried out. A highly efficient, first total synthesis of penienone 25 and penihydrone 26 has been accomplished. Thus, the 1,4 -addition reaction of $\mathbf{1}$ with the (E, E)-1,3-heptadienyl cyanocuprate and consecutive trap of the resulting copper enolate with formaldehyde gave 28, which upon treatment with DBU or Pyr•HF yielded 25 and 26, respectively. An efficient synthesis of both enantiomers of carvone starting from (S) -20ab has been also accomplished.

Introduction

Many biologically important compounds have a chiral cyclohexane ring in their structure as the main or a subunit. One attractive method to synthesize these skeletons involves the use of a chiral 2-cyclohexenone derivative as the starting material, taking advantage of its versatile reactivity. Chiral 2-cyclohexenones also have been widely used as building blocks for the preparation of a variety of acyclic chiral compounds. The easily accessible naturally occurring 2-cyclohexenones used for this purpose are, however, restricted to only a few such as carvone and pulegone. ${ }^{1}$ Therefore, considerable efforts have been made to develop an efficient method to prepare chiral 2-cyclohexenones ${ }^{2-4}$ as well as to introduce new 2-cyclohexenone chiral building blocks. ${ }^{5}$

[^0]Optically active 2-cyclohexenone having an alkoxyl group at the 5 -position seems to be an attractive chiral building block for the preparation of a variety of cyclohexanone as well as

[^1]
Scheme 1

Scheme 2

cyclohexenone derivatives, since the transformations shown in Scheme 1 are easily conceivable.

Two research groups ${ }^{6,7}$ have independently synthesized the optically active 5-(benzyloxy)-2-cyclohexenone according to the porcine β-liver esterase-catalyzed asymmetric hydrolysis of meso-1,3-diacetoxy-5-(benzyloxy)cyclohexane and oxidation of the resulting hydroxy monoacetate. However, the enantiomeric excess (ee) of the enone thus prepared was $85-87 \%$ and the method only opens an access to the enantiomer with (S) configuration. To the best of our knowledge, the compound has not been utilized for the synthesis of cyclohexane derivatives.

Herein, we report an efficient and practical synthesis of the optically active 5-(tert-butyldimethylsiloxy)-2-cyclohexenone (1) and its 6 -substituted derivative 2, which readily undergo the transformations shown in Scheme 1 highly selectively. ${ }^{8}$

Results and Discussion

Synthesis of Optically Active 5-(tert-Butyldimethylsiloxy)-2-cyclohexenone (1) and Its 6-Substituted Derivative 2. The synthesis of nonracemic $\mathbf{1}$ has been readily carried out starting from the optically active ethyl 3-hydroxy-4-chlorobutyrate (3). First, (R) - $\mathbf{3}$ (98.3% ee) was converted into the (S)-ethyl 3-(tert-butyldimethylsiloxy)-5-hexenoate (4) in 75% overall yield according to the procedure shown in Scheme 2. The conversion of (S)-4 into (S) $\mathbf{- 1}$ was smoothly carried out as illustrated in Scheme 3. Thus, the reaction of $(S)-4$ with a $\mathrm{Ti}(\mathrm{O} i-\operatorname{Pr}) 4 / 2 i-$ PrMgCl reagent resulted in a tandem reaction of intramolecular

[^2]
Scheme 3

12a(76\%): $\mathrm{R}=\mathrm{Me}$ 12b $(56 \%): \mathrm{R}=\mathrm{PhCH}_{2}$

nucleophilic acyl substitution and intramolecular carbonyl addition to afford 7 in 76% yield. ${ }^{9}$ The reaction of 7 with FeCl_{3} in the presence of pyridine yielded the ring expansion product 8, which was treated in turn, without purification, with NaOAc in $\mathrm{CH}_{3} \mathrm{OH}$ to furnish $(S)-1$ in 90% overall yield from $7 .{ }^{10}$

5-(tert-Butyldimethylsiloxy)-2-cyclohexenones 2 having a substituent at the 6-position can also be readily synthesized from 3. Thus, the introduction of a methyl or benzyl group at the 2-position of (S)-9, prepared by desilylation of $(S)-\mathbf{4}$, according to the reported protocol, ${ }^{11}$ gave, after silylation, 11a and 11b, respectively (Scheme 2). Following the reaction sequence of 4 $\rightarrow \mathbf{1}$, the compounds $\mathbf{1 1 a , b}$ yielded $\mathbf{2 a} \mathbf{a}, \mathbf{b}$, which consisted of two diastereomers in a ratio of 9:1 for 2a and $>95:<5$ for $\mathbf{2 b}$ (Scheme 3, where only the major diastereoisomer is shown).

Since both (R) - and (S)- $\mathbf{3}$ are commercially available in excellent optical purity or can be readily prepared by enantioselective hydrogenation of ethyl 4-chloro-3-oxobutyrate with a BINAP-Ru catalyst, ${ }^{12}$ the present method allows the preparation of both enantiomers of $\mathbf{1}$ and $\mathbf{2}$, and we indeed prepared $(R)-\mathbf{1}$ starting from (S)-3. In addition, as the reagents used for the transformation of $\mathbf{3}$ into $\mathbf{1}$ or $\mathbf{2}$ are nontoxic and inexpensive, the overall yield is high, and all the reaction procedures being operationally simple, the synthesis of $\mathbf{1}$ and $\mathbf{2}$ is practical. The compounds $\mathbf{1}$ and 2 thus obtained are found to be stable: no racemization or degradation has been detected on storage.

Synthetic Utility of 1 as Masked Chiral Synthetic Equivalent of 2,5-Cyclohexadienone. The Gilman butylcuprate reagent $\left(\mathrm{Bu}_{2} \mathrm{CuLi}\right)$ and the higher-order butylcyanocuprate $\left(\mathrm{Bu}_{2} \mathrm{Cu}(\mathrm{CN})\right.$ Li_{2}) reacted with $\mathbf{1}$ via an anti-addition pathway, as expected, with selectivities of $89: 11$ and $98.5: 1.5$, respectively, to afford trans- $13(\mathrm{R}=\mathrm{Bu})$ in excellent yield. ${ }^{13}$ Meanwhile, to our surprise, the reaction with the lower-order butylcyanocuprate

[^3]Scheme 4. Conjugate Addition of Higher- and Lower-Order Cyanocuprates onto 1 Followed by Desiloxylation Yielding the Chiral 5-Substituted-2-cyclohexenone $14(\mathrm{R}=\mathrm{Bu})$

$(\mathrm{BuCu}(\mathrm{CN}) \mathrm{Li})^{14}$ proceeded via the syn-addition pathway providing cis- $\mathbf{1 3}$ almost exclusively. ${ }^{15}$ The treatment with DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) of trans- and cis- $\mathbf{1 3}$ thus prepared gave, respectively, the (S)- and (R)-5-butyl-2-cyclohexenone (14) in good yield (Scheme 4). The ee values of both enantiomers of $\mathbf{1 4}$ were almost identical to that of the starting 3 (98.3% ee), ${ }^{16}$ suggesting that no racemization occurred during the whole process including the conversion of $\mathbf{3}$ into $\mathbf{1}$. Noteworthy here is the fact that the desiloxylation of cis-13 (R $=\mathrm{Bu})$ requires harsher conditions than those needed for trans$13(\mathrm{R}=\mathrm{Bu}){ }^{17}$ this can be explained by assuming that the reaction occurs through an antiperiplanar pathway, and for cis13, a large 1,3-diaxial interaction between the OTBS and the R group appears to make the antiperiplanar transition state higher in energy (Scheme 4).

Since $\mathrm{Bu}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}$ gave better selectivity than $\mathrm{Bu}_{2} \mathrm{CuLi}$, the 1,4 -addition reactions of $\mathbf{1}$ using a variety of higher- and lower-order cyanocuprates were carried out. The yield and diastereomeric ratio of the resulting 1,4-addition products $\mathbf{1 3}$ as well as their desiloxylation into 5 -substituted-cyclohexenones 14 in several representative cases are summarized in Tables 1 and 2 , respectively.

As can be seen from Table 1, a variety of $\mathrm{R}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}$ where R is methyl, primary-, secondary-, and tertiary-alkyl, phenyl, and vinyl gave the corresponding trans- $\mathbf{1 3}$ highly predominantly and in excellent yields. The mixed higher-order cyanocuprate ${ }^{19}$ $\left[\mathrm{RCu}(2\right.$-thienyl $\left.)(\mathrm{CN}) \mathrm{Li}_{2}\right]$ can also be used for the production of trans-13 (entry 3). In contrast, as revealed from Table 2, the reaction of $\mathbf{1}$ with a variety of lower-order cyanocuprates, except

[^4]Table 1. 1,4-Addition of Higher-Order Cyanocuprates onto (S)-1 $\mathbf{1}^{a}$

${ }^{a}$ The reactions were run in THF. ${ }^{b}$ Elimination performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with DBU (3 equiv) at r.t. for $5 \mathrm{~h} .{ }^{c}$ Reported $[\alpha]_{\mathrm{D}}$ for the $(R)-\mathbf{1 4}$: $-90.2(\mathrm{R}=\mathrm{Me}) ;-51.2(\mathrm{R}=\mathrm{Bu}) ;-46.4(\mathrm{R}=\mathrm{Ph})$; see ref $18 .{ }^{d} \mathrm{GC}$ measurement. ${ }^{e}$ Isolated yield unless otherwise noted. ${ }^{f}$ Isolated yield from 13. ${ }^{g}$ In CHCl_{3} at $23{ }^{\circ} \mathrm{C} .{ }^{h} \mathrm{R}(2$-thienyl $) \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}$ was used. ${ }^{i}$ NMR measurement. ${ }^{j}$ NMR yield.
for the vinyl derivative, proceeds mainly via the syn-addition pathway, although the yield with the phenylcyanocuprate is moderate. Especially noteworthy is the excellent cis-selectivity observed with methyl and primary- and secondary-alkyl derivatives. The tertiary-alkyl and phenyl derivatives (Table 2, entries 9 and 10), however, proceeded with lower cis-selectivity of 75$80 \% \mathrm{dr}$ (diastereomeric ratio). It can also be found that, even if the selectivity was somewhat diminished, the lower-order cyanocuprates $\mathrm{RCu}(\mathrm{CN}) \mathrm{MgX}$ derived from Grignard reagents also yielded the cis-addition product mainly (entries 4 and 7). Noteworthy also is the fact that, although the reaction of $\mathrm{RCu}-$ (CN)Li proceeded with excellent cis-selectivity either in $\mathrm{Et}_{2} \mathrm{O}$ or in THF, the yield appeared to be better in $\mathrm{Et}_{2} \mathrm{O}$ (entries 1 vs 2 and 3 vs 5). ${ }^{20}$ The only exception to the cis-selective addition reaction of lower-order cyanocuprates to $\mathbf{1}$ is the vinyl derivative

[^5]Table 2. 1,4-Addition of Lower-Order Cyanocuprates onto rac-1 ${ }^{a}$

Entry	$\mathrm{RCu}(\mathrm{CN}) \mathrm{M}$		1,4-adduct (13)		Elimination Product $14^{b}$$\text { Yield (\%) }{ }^{d}$
	R	M	cis : trans ${ }^{\text {c }}$	Yield (\%) ${ }^{\text {d }}$	
1	Me	Li	>99:<1 ${ }^{e}$	$77 f$	80
2 g	Me	Li	>95:<5 ${ }^{e}$	$35 f$	
3^{h}	Bu	Li	>99.5 : <0.5 ${ }^{e}$	$91{ }^{f}$	$74 f$
4	Bu	Mg	90:10	73	
58	Bu	Li	>99: <1	80	
6	lon	Li	98:2	${ }_{87}{ }^{f}$	
7		Mg	70:30		
8	sec-Bu	Li	>98: <2	$84{ }^{f}$	75^{i}
9	tert-Bu	Li	80:20	78	
10	Ph	Li	75:25	25	
11	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}$	Li	25:75	45	

${ }^{a}$ The reactions were run in $\mathrm{Et}_{2} \mathrm{O}$, unless otherwise noted, at -78 ${ }^{\circ} \mathrm{C}$ (entries 3-7) or from -78 to $0{ }^{\circ} \mathrm{C}$ (entries 1, 2, 8-11). ${ }^{b}$ With DBU (3 equiv) at $100^{\circ} \mathrm{C}, \mathrm{DMF}, 1 \mathrm{~h}$. The elimination with DBU at r.t. in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (or DMF) for 5 h gave $\mathbf{1 4}<10 \%$ yield. ${ }^{c}$ NMR measurement unless otherwise noted. ${ }^{d}$ NMR yield unless otherwise noted. ${ }^{e}$ GC measurement. ${ }^{f}$ Isolated yield. ${ }^{g}$ THF was used. ${ }^{h}(S)-\mathbf{1}$ was used (see Scheme 4). ${ }^{i}$ The elimination was carried out with cat. p-TSA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t. for 3 h , under treatment with DBU (3 equiv), $100^{\circ} \mathrm{C}, \mathrm{DMF}, 1 \mathrm{~h}$, 14 has been produced in 30% yield. ${ }^{j}$ NMR yield.
(entry 11) which gave the trans-adduct as the major product, and the explanation underlying this exception must await further study.

The results shown in Tables 1 and 2 are significant from the synthetic viewpoint since, by simply choosing the lower- or higher-order alkyl cyanocuprate, ${ }^{21}$ both diastereomers of $\mathbf{1 3}$ can be readily prepared, thus opening up an easy and practical access to both enantiomers of 5-alkyl-2-cyclohexenones $\mathbf{1 4}$ starting from a single enantiomer of $\mathbf{1} .{ }^{22}$

The unprecedented syn-selective 1,4-addition reaction of lower-order cyanocuprates onto 5 -substituted-2-cyclohexenones was also significant from the viewpoint of the organocopper chemistry; ${ }^{13}$ thus, we devoted our efforts to reveal whether this phenomenon was characteristic of $\mathbf{1}$ or not. The reaction of $\mathrm{BuCu}(\mathrm{CN}) \mathrm{Li}$ with the 5-methyl- and 5-(trimethylsilyl)-2-cyclohexenone ${ }^{5}$ yielded almost exclusively the corresponding trans-addition products. This result strongly indicated that the alkoxy functionality in the substrate $\mathbf{1}$ plays a crucial role in the control of the stereochemistry of the conjugate addition reaction to the cis-product. We confirmed this assumption by carrying out the reaction of $\mathrm{BuCu}(\mathrm{CN}) \mathrm{Li}$ with the 5-(benzyloxy)-2-cyclohexenone, ${ }^{6,7}$ which provided the corresponding cisadduct exclusively with 98% dr. We then carried out the reaction of $\mathrm{BuCu}(\mathrm{CN}) \mathrm{Li}$ with 4-(tert-butyldimethylsiloxy)-2-cyclohexenone ${ }^{23}$ to examine the effect of the position of the alkoxy group on the diastereoselectivity of the addition. The reaction furnished the trans-addition product as a single diastereomer, suggesting

[^6]Scheme 5. Proposed Intermediates for the Reaction of $\mathbf{1}$ with Higher- or Lower-Order Cyanocuprates

Scheme 6. Chiral 2,5-Cyclohexadienone Synthons Reported So Far

that the selectivity is also highly dependent on the positioning of the alkoxy group on the cyclohexane ring. Thus, in conclusion, the syn-selective conjugate addition is a characteristic of the 5-alkoxy-2-cyclohexenone.

The stereochemical outcome of the reaction shown in Tables 1 and 2 seems to be explained by assuming that the reaction of 1 with organocopper compounds proceeds via the intermediacy of a d, π^{*} complex as suggested by Corey. ${ }^{24}$ Thus, the reaction with $\mathrm{R}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}$ proceeds via the d, π^{*} complex 15 having an alkoxy group at a pseudo-equatorial position, while the reaction with $\mathrm{RCu}(\mathrm{CN}) \mathrm{Li}$ proceeds via 16, where the copper atom is coordinated by the oxygen of the alkoxy group (Scheme 5). ${ }^{25}$

The result that $\mathbf{1}$ can be readily converted into a variety of optically active 14, which also has a chiral 2-cyclohexenone moiety, indicates that $\mathbf{1}$ acts as a masked chiral synthetic equivalent of the 2,5 -cyclohexadienone. Two chiral 2,5 -cyclohexadienone synthons have already been developed: Asaoka and Takei have introduced the optically active 5-(trimethylsilyl)-2-cyclohexenone (17), ${ }^{5 \mathrm{a}}$ and Takano and Ogasawara have developed the optically active tricyclic dienone $\mathbf{1 8}$ (Scheme 6). ${ }^{5 b}$ Both compounds $\mathbf{1 7}$ and $\mathbf{1 8}$ allow highly stereoselective 1,4addition reactions of organocopper compounds, and the resulting 1,4 -adducts are converted into the 5 -substituted-2-cyclohexenones by removal of the group masking the double bond. However, the step for the removal of the masking group sometimes results in rather low yields for $\mathbf{1 7}$ or requires severe reaction conditions for $\mathbf{1 8}$. The compound $\mathbf{1}$ developed here has the advantage that the reductive elimination can be readily carried out under milder reaction conditions and in good yields; moreover, $\mathbf{1}$ alone allows the highly selective synthesis of both

[^7]Scheme 7. Synthesis of 2,5-Disubstituted-2-cyclohexenones (19) from 2 via 20

2
2a $\mathrm{R}=\mathrm{Me}$ (mixture at $\mathrm{C}-6,9: 1$)

2b $\mathrm{R}=\mathrm{PhCH}_{2}$ (mixture at $\mathrm{C}-6,>95:<5$)

20
20aa $R^{1}=i-\operatorname{Pr}(95 \%)$
$20 \mathrm{ab}^{1}=\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Me})(94 \%)$
$20 \mathrm{ac} \mathrm{R}^{1}=\mathrm{Bu}$ (95\%)

19
19aa ($80 \%, 97.9 \%$ e.e.)
19ab ($S_{\text {-carvone, }} 83 \%, 93 \%$ e.e.) 19ac (90\%) 19b (85\%)
enantiomers of the 5-substituted-2-cyclohexenones which might be difficult to attain using $\mathbf{1 7}$ or 18.

Synthesis of Optically Active 2,5- and 3,5-Disubstitutedand 2,3,5-Trisubstituted-2-Cyclohexenones from 1 and/or 2. With a highly efficient method enabling the synthesis of chiral 5 -substituted-2-cyclohexenones (14) from 1 in hand, we anticipated that the optically active 2,5 -disubstituted-2-cyclohexenones (19) might be obtained from the enone 2. Although 2 consists of a mixture of two diastereomers in a ratio 9:1 for 2a and $>95:<5$ for $\mathbf{2 b}$ with respect to the stereogenic center at C-6, we expected that the stereochemistry of the conjugate addition of cuprate reagents onto 2 might be controlled essentially by the siloxy group at C-5, thus providing, after reductive elimination, the enones 19 with excellent enantiomeric excess.

The reaction of $\mathbf{2 a}$ with $i-\mathrm{Pr}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}$ gave the corresponding 1,4-addition products 20aa in 95% yield (the diastereomeric ratio being not determined) which upon treatment with DBU gave 19aa with 97.9% ee ${ }^{16}$ in 80% yield. ${ }^{26}$ Similarly, with (2propenyl) $)_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2},{ }^{27}$ 19ab, i.e. (S)-carvone, was obtained in $93.0 \% \mathrm{ee}^{16}$ and in excellent yield. The reaction with $\mathrm{Bu}_{2} \mathrm{Cu}-$ $(\mathrm{CN}) \mathrm{Li}_{2}$ yielded 20ac, which upon treatment with DBU gave 19ac. Similarly, the reaction of $\mathbf{2 b}$ with $\mathrm{Bu}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}$ followed by desiloxylation of the resulting 20b yielded 19b. Although our attempts to determine the ee values of 19 ac and 19 b were unsuccessful, the results obtained for 19aa and 19ab, together with the proton and carbon NMR data of 20ac and 20b which showed the presence of two diastereoisomers for the former and essentially a single one for the latter, strongly suggest that 19ac and 19b, with excellent ee, had been produced with the absolute configuration shown in Scheme 7. These results strongly indicated that the conjugate addition of higher-order cyanocuprates on 2 was mainly controlled, as expected, by the substituent at the $\mathrm{C}-5$ position to furnish the anti-addition product highly selectively.

The NMR data of the reaction product of the lower-order $\mathrm{BuCu}(\mathrm{CN}) \mathrm{Li}$ with 2a strongly indicated that, as is the case for 1, the reaction proceeded via the syn-pathway with the cisselectivity diminished to cis:trans $=85: 15$ (determined by the characteristic signals of the proton NMR: $\delta_{c i s}=3.95 \mathrm{ppm}, \delta_{\text {trans }}$ $=4.19 \mathrm{ppm})$. The lowered cis-selectivity can be explained by the steric interaction between the OTBS group and the methyl at C-6 in the transition state of the conjugate addition intermediate; thus, the coordination of the copper atom by the oxygen does not occur smoothly (Figure 1).

The ketones 14 obtained from 1 and organocopper reagents (Table 1) can be also readily converted into 3,5-disubstituted-2-cyclohexenones (22) as exemplified in Scheme 8. Thus, the reaction of $\mathbf{1 4}(\mathrm{R}=\mathrm{Bu})$ with MeLi and the following manipulation of the resulting 1,2 -addition product 21 by a conventional reaction sequence provided 22 (97.9% ee). ${ }^{16}$ The

[^8]

Figure 1.
Scheme 8. Synthesis of 3,5- and 2,3,5-Substituted-2-cyclohexenones

2,3,5-trisubstituted-2-cyclohexenones 24aa and 24ac can be similarly synthesized via 23 starting from the ketones $19(\mathrm{R}=$ $i-\mathrm{Pr}, \mathrm{Bu})$ (Scheme 8).

Chiral 2,5-, 3,5-, and 2,3,5-substituted-2-cyclohexenones are generally derived from naturally available carvones or pulegones. ${ }^{1}$ To the best of our knowledge, only a very few methods for their asymmetric syntheses appear in the literature which include the use of the enantiomerically pure 5-trimethylsilyl-2-cyclohexenone $\mathbf{1 7}$ as the starting material for the 2,5-disubstituted-2-cyclohexenones ${ }^{5 \mathrm{a}}$ and for the 3,5-substituted-2cyclohexenones, through an asymmetric aldolisation of 1,5diketones induced by the (S)-proline, ${ }^{28}$ a Diels - Alder condensation of enantiomerically pure vinylketenes with the appropriate dienophiles, ${ }^{29}$ or an enantioselective deprotonation. ${ }^{30}$ The approach we have developed here for the synthesis of 2,5-, 3,5and 2,3,5-substituted-2-cyclohexenones has the advantage of being very efficient and general.

Asymmetric Synthesis of Penienone, Penihydrone, and Carvone. In this section, we describe an efficient synthesis of three natural products starting from the enones $\mathbf{1}$ or $\mathbf{2}$ by taking advantage of their highly selective conjugate addition reactions with cyanocuprates.

Penienone (25) and penihydrone (26) have been isolated recently from the metabolite of the fungus Penicillium sp. No13 as new plant growth regulators, and their structures have been elucidated on the basis of NMR and CD spectra studies. ${ }^{31}$ A short synthesis of both 25 and 26 starting from (R) - $\mathbf{1}$ was accomplished according to the reaction sequence shown in Scheme 9 . It was clearly apparent that, with $(R)-\mathbf{1}$ in hand, the preparation of the higher-order (E, E)-dienylcyanocuprate was the main problem to tackle. For this purpose, we applied the higher-order cyanocuprates derived from the dienylzirconium species. ${ }^{32}$ Thus, hydrozirconation of the enyne 27^{33} followed

[^9]Scheme 9. Synthesis of (-)-Penienone and (+)-Penihydrone

Scheme 10. Synthesis of (R)-Carvone

by transmetalation with $\mathrm{Me}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}$ generated in situ gave the mixed higher-order (E, E)-dienylcyanocuprate which reacted highly selectively with (R) - $\mathbf{1}$ to give, after trap of the resulting copper enolate ${ }^{34}$ with formaldehyde, the key intermediate 28 as a single diastereoisomer in a good 68% overall yield. The treatment of $\mathbf{2 8}$ with DBU in dichloromethane yielded penienone (25) in 74% yield. The protodesilylation of $\mathbf{2 8}$ proved to be troublesome: treatment with $\mathrm{Bu}_{4} \mathrm{NF}$ gave a complex mixture of unidentified products and the reaction with an acidic reagent resulted in the β-elimination product $\mathbf{2 5}$. However, the reaction of 28 with $\mathrm{Pyr} \cdot \mathrm{HF}$ in acetonitrile gave, to our satisfaction, penihydrone (26) in a moderate 62% yield. Both of the compounds 25 and 26 thus synthesized showed identical spectroscopic data as those reported for the products isolated from nature, therefore certifying the validity of the characterization.

We have already described the synthesis of (S)-carvone $[(S)$ 19ab] by the reaction of $2 \mathbf{2 a}$ with (2-propenyl) ${ }_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}{ }^{27}$ (Scheme 7). We also readily succeeded in synthesizing (R) carvone $[(R)-\mathbf{1 9 a b}]$ from the same enantiomer of $\mathbf{2 a}$ according to the procedures shown in Scheme 10. The (R)-carvone $[(R)$ 19ab] thus obtained in 50% overall yield from 20ab has an ee of $96.2 \% .^{16}$

Conclusion

A highly efficient and practical method for synthesizing the optically active 5-(tert-butyldimethylsiloxy)-2-cyclohexenone (1) and its 6 -substituted derivatives 2 from the commercially available, optically active ethyl 3-hydroxy-4-chlorobutyrate has been developed. The cyclohexenones thus prepared are found to act as useful chiral building blocks for preparing both enantiomers of the 5-monosubstituted-2-cyclohexenones, and the 2,5- and 3,5-disubstituted- and 2,3,5-trisubstituted-2-cyclohexenones. The synthetic utility of the reaction has been

[^10]demonstrated by the syntheses of several naturally occurring compounds such as penienone, penihydrone, and carvone.

Experimental Section

General Procedure. All reactions were carried out under an argon atmosphere, using flame-dried glassware and were monitored by TLC (Merck, Kieselgel 60 F254); visualization was done with UV light (254 $\mathrm{nm}) / \mathrm{KMnO}_{4}$ or CAN. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded at 300 and 75 MHz , respectively; chemical shifts (δ) are reported in parts per million with reference at $0.0 \mathrm{ppm}\left(\mathrm{Me}_{4} \mathrm{Si}\right)$ or $7.26 \mathrm{ppm}\left(\mathrm{CHCl}_{3}\right)$ for the proton and at 77.0 ppm (centered on the signal of CDCl_{3}) for the carbon. Enantiomeric excess (ee) values have been determined by chiral GC (Chirasil-DEX/Chrompack, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}, \mathrm{DF}=0.25$) or chiral HPLC (Daicel Chiralcel OB-H).

Materials. CuCN was purchased from Koso Chemical Co., Ltd. (Tokyo, Japan) and used without further purification. CuI was purified in a soxlet apparatus with refluxing THF. MeLi, BuLi, $s-\mathrm{BuLi}, t-\mathrm{BuLi}$, PhLi , and $\mathrm{CH}_{2}=\mathrm{CHMgBr}$ were purchased from Aldrich; the citronellyllithium was prepared from citronellyl bromide and lithium metal in hexane at $60^{\circ} \mathrm{C}$; the vinyllithium was prepared from tetravinylstannane and BuLi . The concentrations of Grignard and organolithium reagents were determined according to an acid/base titration. (R) - and (S)-Ethyl 3-hydroxy-4-chlorobutyrate (3) are available from DAISO Co., Ltd (Japan).

Preparation of Enones 1 and 2. (R)-Ethyl 3-Hydroxy-4-iodobutyrate (5). To a solution of ethyl 3-hydroxy-4-chlorobutyrate (16.65 $\mathrm{g}, 100 \mathrm{mmol})$ in dry acetone (200 mL) was added dry $\mathrm{NaI}(60 \mathrm{~g}, 400$ $\mathrm{mmol})$. The mixture was stirred energetically under gentle reflux for 3 days. The acetone was mainly evaporated in vacuo, the residue diluted with water $(100 \mathrm{~mL})$. A usual extraction with $\mathrm{Et}_{2} \mathrm{O}$ followed by washing with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ gave, after drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the solvent, a pale yellow oil which was passed through a pad of silica (elution hexane: $\mathrm{Et}_{2} \mathrm{O}=1: 1$) to give after concentration in vacuo $5^{35}(25.5 \mathrm{~g}, 98 \%) .{ }^{1} \mathrm{H}$ NMR: $\delta 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H})$, $3.34(\mathrm{dd}, J=10.2$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=10.2$ and 5.7 Hz , $1 \mathrm{H}), 3.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=16.5$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J$ $=16.5$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 171.7$, $67.3,60.8,40.7,13.8,12.0$.
(R)-Ethyl 3-(tert-Butyldimethylsiloxy)-4-iodobutyrate (6). To a solution of $5(25.5 \mathrm{~g}, 98 \mathrm{mmol})$ in dry DMF (200 mL) were added imidazole ($13.3 \mathrm{~g}, 196 \mathrm{mmol}$) and $\mathrm{NaI}(29.4 \mathrm{~g}, 196 \mathrm{mmol})$. Portionwise addition of TBSCl $(22.3 \mathrm{~g}, 148 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ followed by stirring for 12 h from $0^{\circ} \mathrm{C}$ to room temperature (rt) gave, after dilution with $\mathrm{H}_{2} \mathrm{O}$ and usual workup with $\mathrm{Et}_{2} \mathrm{O}$, drying $\left(\mathrm{MgSO}_{4}\right)$, and evaporation, an oil which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes $-\mathrm{Et}_{2} \mathrm{O}$ gradient) to yield $6(36.56 \mathrm{~g}, 99 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 4.14$ (qd, $J=7.2$ and $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=10.1$ and 4.4 $\mathrm{Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=10.1$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=15.3$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=15.3$ and $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}$,
(35) Larchevêque, M.; Henrot, S. Tetrahedron 1990, 46, 4277-4282.
$3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 170.8,68.2$, $60.3,42.3,25.4,17.6,13.9,12.7,-4.8,-5.2$. IR (neat): 2956, 2929, 2856, 1736, 1375, 1307, 1255, 1194, 1099, 837, $779 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{IO}_{3} \mathrm{Si}: \mathrm{C}, 38.71 ; \mathrm{H}, 6.77$. Found: C, $38.77 ; \mathrm{H}, 6.80$.
(S)-Ethyl 3-(tert-Butyldimethylsiloxy)-5-hexenoate (4). To a suspension of $\mathrm{CuI}(5.7 \mathrm{~g}, 30 \mathrm{mmol})$ in freshly distilled THF $(60 \mathrm{~mL})$ was slowly added, at $-35{ }^{\circ} \mathrm{C}$ and under efficient magnetic stirring, vinylmagnesium bromide (1.0 M in THF, $60 \mathrm{~mL}, 60 \mathrm{mmol}$). The resulting brown slurry was stirred for 15 min , and DMPU $(7.3 \mathrm{~mL}, 60$ $\mathrm{mmol})^{36}$ was added at $-35{ }^{\circ} \mathrm{C}$ followed by $(\mathrm{EtO}){ }_{3} \mathrm{P}(10.3 \mathrm{~mL}, 60$ mmol). ${ }^{37}$ The resulting mixture was stirred for 5 min and a THF (20 $\mathrm{mL})$ solution of $6(11.17 \mathrm{~g}, 30 \mathrm{mmol})$ was slowly added at $-35^{\circ} \mathrm{C}$. The stirring was continued for 1 h at $-35{ }^{\circ} \mathrm{C}$ before allowing the mixture to warm to r ,.t. over a period of $2-3 \mathrm{~h}$. The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ (saturated $\mathrm{NH}_{4} \mathrm{Cl}$) and stirred at r.t. for 30 min . The product was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporation of the solvent gave a yellow residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes $\left.-\mathrm{Et}_{2} \mathrm{O}\right)$ to give $4(6.36 \mathrm{~g}, 78 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 5.81$ (ddt, $J=17.9,9.5$ and $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.11-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.21$ (quint., $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (qt, $J=7.2$ and $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.31-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 171.9,134.2,117.7,68.9,60.2,42.1$, $42.0,25.6,17.8,14.0,-4.7,-5.1$. IR (neat), 2929, 2858, 1737, 1471, 1375, 1309, 1255, 1176, 1093, 1034, 1004, 916, 837, 809, 777. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$: C, 61.72; $\mathrm{H}, 10.36$. Found: C, $61.66 ; \mathrm{H}, 10.38$.
(1RS,3S)-1-Hydroxy-3-(tert-butyldimethylsiloxy)bicyclo[3.1.0]hexane [(S)-7]. To a solution of $(S)-4(6.36 \mathrm{~g}, 23.4 \mathrm{mmol})$ in freshly distilled $\mathrm{Et}_{2} \mathrm{O}(120 \mathrm{~mL})$ was added at r.t. $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(13.80 \mathrm{~mL} ; 46.8$ mmol); the resulting colorless mixture was cooled to $-45^{\circ} \mathrm{C}$ and $i-\mathrm{PrMgCl}\left(1.48 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O}, 63.2 \mathrm{~mL}, 93.6 \mathrm{mmol}\right)$ was added dropwise. The clear yellow solution, which turned slowly to dark orange, was stirred for 1 h between -45 and $-40^{\circ} \mathrm{C}$; then, the temperature was allowed to rise to r.t. over a period of 90 min and stirring was continued for another 2 h . The reaction was hydrolyzed at $0^{\circ} \mathrm{C}$ with saturated $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$; the resulting heterogeneous gray mixture was vigorously stirred for 30 min at r.t., whereupon a white suspension appeared. Extraction with $\mathrm{Et}_{2} \mathrm{O}$ and drying $\left(\mathrm{MgSO}_{4}\right)$ gave, after evaporation of the solvent, a pale yellow oil which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes $-\mathrm{Et}_{2} \mathrm{O}$ gradient) to yield a colorless oil (S)-7 (4.05 g, 76\%) as a mixture of two diastereoisomers in a $1: 1$ ratio. ${ }^{1} \mathrm{H}$ NMR: $\delta 4.28-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.71(\mathrm{~m}, 1 \mathrm{H})$, $2.50-2.30(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.35(\mathrm{dd}, J=12.0$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.13$ $(\mathrm{m}, 2 \mathrm{H}), 2.04(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{dd}, J=4.5$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $0.94-0.74(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.38(\mathrm{dd}, J=5.5$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR: $\delta 71.9,70.7,63.7,60.8,44.2,42.7,37.8,36.5,25.70,25.66$, $23.7,22.5,18.9,17.9,17.7,16.7,-5.00,-5.06$. IR (neat) 3307,2929 , 2858, 1255, 1115, 1093, 1053, 1003, 837, 775. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 63.10 ; \mathrm{H}, 10.59$. Found: C, $63.01 ; \mathrm{H}, 10.69$.
(S)-5-(tert-Butyldimethylsiloxy)-2-cyclohexenone [(S)-1]. Into a flame-dried round-bottom flask flushed with argon was introduced FeCl_{3} ($6.34 \mathrm{~g}, 39.12 \mathrm{mmol}$); the flask was cooled to $-5^{\circ} \mathrm{C}$ and dry DMF $(20 \mathrm{~mL})$ was slowly added under vigorous magnetic stirring. The ice bath was removed, and pyridine ($1.4 \mathrm{~mL}, 17.8 \mathrm{mmol}$) and then $(S)-7$ $(4.05 \mathrm{~g}, 17.78 \mathrm{mmol})$ in solution in DMF (2 mL) were added. The resulting mixture was stirred for 30 min at r.t. and diluted with water $(20 \mathrm{~mL})$. Extraction with $\mathrm{Et}_{2} \mathrm{O}$, drying $\left(\mathrm{MgSO}_{4}\right)$, and evaporation of the solvent gave a pale brown oil which was diluted with $\mathrm{MeOH}(20$ $\mathrm{mL})$ and treated at r.t. with $\mathrm{NaOAc}(7.38 \mathrm{~g}, 90 \mathrm{mmol})$ added in one portion under efficient stirring. The resulting mixture was stirred for 1 h before dilution with water $(100 \mathrm{~mL})$. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, drying $\left(\mathrm{MgSO}_{4}\right)$, and concentration in vacuo gave a colorless oil which was rapidly purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes $-\mathrm{Et}_{2} \mathrm{O}$ gradient) to yield (S)-1 as a colorless oil $\left(3.61 \mathrm{~g}, 90 \%\right.$) stored over CaH_{2} at

[^11]r.t. $[\alpha]^{23}{ }_{\mathrm{D}}=+9.82\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $\delta 6.88(\mathrm{ddd}, J=10.2$, 5.1 and $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{br} \mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (dddd, $J=$ 9.7, 7.6, 4.5 and $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=15.9$, and $4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=15.9$ and $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (dddd, $J=18.3,7.6,3.1$ and $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 198.6,146.9,130.0,67.4,47.8,35.3,25.5,17.7,-5.0,-5.1$. IR (neat) 2954, 2929, 2856, 1684, 1253, 1103, 837, 777. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$ Si: C, 63.67 ; H, 9.79. Found: C, 63.69; H, 9.78. Similarly, the commercially available $(S)-\mathbf{3}$ yielded $(R)-\mathbf{1}:[\alpha]^{25}{ }_{\mathrm{D}}=-9.88(c$ $0.664, \mathrm{CHCl}_{3}$).
(S)-Ethyl 3-Hydroxy-5-hexenoate [(S)-9]. To an ice-cooled solution of $(S)-4(2.72 \mathrm{~g}, 10 \mathrm{mmol})$ in acetonitrile $(40 \mathrm{~mL})$ was slowly added HF (55% solution, $0.4 \mathrm{~mL}, 26 \mathrm{mmol}$). The resulting mixture was allowed to stand at r.t. for 90 min before quenching with saturated NaHCO_{3}. Extraction with AcOEt, drying $\left(\mathrm{MgSO}_{4}\right)$, and concentration in vacuo gave a residue purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes $-\mathrm{Et}_{2} \mathrm{O}$ gradient) to yield $(S)-9(1.42 \mathrm{~g}, 90 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 5.81$ (ddt, $J=17.7,9.6$ and $\left.7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.16-5.07$ $(\mathrm{m}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.02(\mathrm{~m}, 1 \mathrm{H}), 2.97$ (br s, $1 \mathrm{H}), 2.51(\mathrm{dd}, J=16.5$ and $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=16.5$ and 8.7 $\mathrm{Hz}, 1 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 172.9, 134.0, 118.2, 67.3, 60.6, 40.8, 40.5. 14.0. IR (neat): 3448, 3078, 2981, 2933, 1734, 1641, 1373, 1302, 1265, 1176, 1117, 1030, 918, $850 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}$: C, $60.74 ; \mathrm{H}, 8.92$. Found: C, 60.46; H, 9.07.
(2S,3S)-Ethyl 2-Methyl-3-hydroxy-5-hexenoate (10a). To a THF $(27 \mathrm{~mL})$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(3.75 \mathrm{~mL}, 27 \mathrm{mmol})$ cooled to $-78^{\circ} \mathrm{C}$ was added BuLi (1.58 M in n-hexane, $17.1 \mathrm{~mL}, 27 \mathrm{mmol}$). The cooling bath was removed and the mixture was allowed to stir at r.t. for 30 min. The resulting clear solution was cooled to $-60^{\circ} \mathrm{C}$, and a THF solution $(5 \mathrm{~mL})$ of $(S)-9(1.42 \mathrm{~g}, 9 \mathrm{mmol})$ was added dropwise via syringe. The mixture was stirred for 30 min from -60 to $-25^{\circ} \mathrm{C}$ and a mixture of MeI ($1.40 \mathrm{~mL}, 22.5 \mathrm{mmol}$) and DMPU ($4.23 \mathrm{~mL} ; 35.1$ mmol) was slowly added. The mixture was allowed to stir for 30 min from -25 to $0^{\circ} \mathrm{C}$ before quenching with water. Extraction with AcOEt, drying $\left(\mathrm{MgSO}_{4}\right)$, and evaporation of the solvent gave an oil which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes $\left.-\mathrm{Et}_{2} \mathrm{O}\right)$ to yield 10a $(1.32 \mathrm{~g}, 85 \%)$ as a pale yellow oil in a diastereomeric ratio $=9: 1$. Major diastereoisomer: ${ }^{1} \mathrm{H}$ NMR: $\delta 5.86$ (dddd, $J=17.4,9.6,7.8$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{qd}, J=7.2$ and 0.6 Hz , $2 \mathrm{H}), 3.74(\mathrm{ddd}, J=7.8,6.6$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dq}, J=7.2$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 176.0,134.3,118.1$, $72.5,60.6,44.4,39.0,14.05,14.0$. IR (neat): 3462, 3076, 2979, 2939, 1734, 1641, 1462, 1375, 1257, 1184, 1095, 1043, 916, $864 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 62.77; H, 9.36. Found: C, 62.81; H, 9.60. Minor diastereoisomer: ${ }^{1} \mathrm{H}$ NMR: $\delta 3.96$ (ddd, 7.5, 5.4 and $3.9 \mathrm{~Hz}, 1 \mathrm{H}$).
(2S,3S)-Ethyl 2-Benzyl-3-hydroxy-5-hexenoate (10b). The proton and carbon NMR analysis of the crude mixture showed only one diastereoisomer. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.32-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.88-5.73(\mathrm{~m}, 1 \mathrm{H})$, $5.15-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{dt}, J=6.3$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (ddd, $J=8.7,6.9$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{brt}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.16$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 175.0,138.7,134.2,129.1,128.5$, $126.6,118.2,70.9,60.5,51.7,40.3,35.5,13.9$. IR (neat) 3448,2933 , 1729, 1184, 1030, 916, 700. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 72.55; H, 8.12. Found: C, 72.24; H, 8.17.
(2S,3S)-Ethyl 2-Methyl-3-(tert-butyldimethylsiloxy)-5-hexenoate (11a). To an ice-cooled solution of 10a (1.2 g, 7.0 mmol$)$ and imidazole $(953 \mathrm{mg}, 14 \mathrm{mmol})$ in dry DMF $(14 \mathrm{~mL})$ was added $\mathrm{TBSCl}(1.58 \mathrm{~g}$, 10.5 mmol) in several portions; the mixture was stirred for 12 h at r.t. and quenched with water. Extraction with $\mathrm{Et}_{2} \mathrm{O}$, drying $\left(\mathrm{MgSO}_{4}\right)$, and concentration in vacuo gave a residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes $-\mathrm{Et}_{2} \mathrm{O}$ gradient) to yield 11a (1.98 g , 99%) as a colorless oil (diastereomeric ratio $=9: 1$). Major diastereoisomer: ${ }^{1} \mathrm{H}$ NMR: $\delta 5.92-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.11$ $(\mathrm{qd}, J=7.2$ and $0.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{dt}, J=6.9$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60$ $(\mathrm{dq}, J=7.2$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR: $\delta 175.0,134.3,117.4,73.2,60.1,45.2,38.0,25.6,17.9$, $14.0,12.3,-4.49,-5.16$. IR (neat): 2929, 2858, 1738, 1464, 1375,

1331, 1255, 1178, 1084, 1003, 937, 912, 837, 812, 775, 721, $665 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 62.89 ; \mathrm{H}, 10.55$. Found: C, 62.58 ; H, 10.50. Minor diastereoisomer: ${ }^{1} \mathrm{H}$ NMR: $\delta 1.12(\mathrm{~d}, 7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
(2S,3S)-Ethyl 2-Benzyl-3-(tert-butyldimethylsiloxy)-5-hexenoate (11b). ${ }^{1} \mathrm{H}$ NMR: $\delta 7.28-7.11(\mathrm{~m}, 5 \mathrm{H}), 5.99-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.18-$ $5.08(\mathrm{~m}, 2 \mathrm{H}), 4.10-3.88(\mathrm{~m}, 3 \mathrm{H}), 2.90-2.77(\mathrm{~m}, 3 \mathrm{H}), 2.48-2.24(\mathrm{~m}$, $2 \mathrm{H}), 1.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR: δ 173.7, 139.6, 134.1, 129.0, 128.3, 126.2, 117.8, 72.6, $60.0,53.6,38.6,33.7,25.6,17.9,13.9,-4.4,-5.1$. IR (neat): 2929 , 2856, 1733, 912. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3}$ Si: C, 69.56 ; $\mathrm{H}, 9.45 \mathrm{~cm}^{-1}$. Found: C, 69.64; H, 9.57.
(1RS,2S,3S)-1-Hydroxy-2-methyl-3-(tert-butyldimethylsiloxy)bicyclo[3.1.0]hexane (12a). Obtained as a complex mixture of diastereoisomers, the characterization of which was difficult. Following are some characteristic signals: ${ }^{1} \mathrm{H}$ NMR: $\delta 4.03$ (ddd, $J=6.0,6.0$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{dqd}, J=6.9,6.9$ and 2.4 Hz , $1 \mathrm{H}), \ldots, 1.52(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), \ldots, 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), \ldots$, $0.86(\mathrm{~s}, 9 \mathrm{H}), \ldots, 0.71-0.64(\mathrm{~m}, 1 \mathrm{H}), 0.58-0.53(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ $73.2,67.8,45.4,37.2,31.5,25.7,23.3,22.6,17.9,16.4,14.0,9.6,-4.8$, -5.3 . IR (neat): $3309,2956,2929,2858,1471,1361,1255,1049$, 1020, 837, $775 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 64.41 ; \mathrm{H}, 10.81$. Found: C, 64.49; H, 10.92.
(1RS,2S,3S)-1-Hydroxy-2-benzyl-3-(tert-butyldimethylsiloxy)bicyclo[3.1.0]hexane (12b). Obtained as a 7:3 mixture of diastereoisomers. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.40-7.15(\mathrm{~m}, 5 \mathrm{H}), 4.20(\mathrm{ddd}, J=6.0,6.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=14.4$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.97-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{ddd}, J=13.5,5.0$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-$ $1.38(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{dd}, J=4.8$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.81-0.74(\mathrm{~m}, 1 \mathrm{H}), 0.57(\mathrm{dd}, J=5.5$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.06-0.15$ (m, 12H). IR (neat): 3359, 2954, 2929, 2856, 1716, 1471, 1255, 1103, 1057, 837, 775, 734, $698 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 71.64 ; \mathrm{H}, 9.49$. Found: C, $71.80 ; \mathrm{H}, 9.61$.
($5 S, 6 S$)-5-(tert-Butyldimethylsiloxy)-6-methyl-2-cyclohexenone (2a). Obtained as a 9:1 mixture of diastereoisomers: $[\alpha]^{23}{ }_{\mathrm{D}}=-28.98$ (c $0.25, \mathrm{CHCl}_{3}$). Major diastereoisomer: ${ }^{1} \mathrm{H}$ NMR: $\delta 6.75$ (dddd, $J=$ $10.2,3.9,3.9$ and $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{ddd}, J=10.2,2.1$ and 2.1 Hz , $1 \mathrm{H}), 4.21(\mathrm{ddd}, J=6.0,4.2$ and $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.37(\mathrm{~m}, 3 \mathrm{H}), 1.13$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 201.8$, 145.1, 129.3, 71.0, 48.3, 33.5, 25.5, 17.8, 10.5, $-4.9,-5.0$. IR (neat) 2929, 1682, 1462, 1390, 1255, 1207, 1109, 1063, 1020, 883, 837, 775, 665. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$: C, 64.95 ; H, 10.06. Found: C, 64.93; H, 9.99. Minor diastereoisomer: ${ }^{1} \mathrm{H}$ NMR: $\delta 6.85-6.78(\mathrm{~m}, 1 \mathrm{H}), 3.77$ (ddd, $J=9.9,8.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 145.8,129.6,72.6,51.1,35.4,11.2$.
(5S,6S)-5-(tert-Butyldimethylsiloxy)-6-benzyl-2-cyclohexenone (2b). Obtained as a single diastereoisomer. $[\alpha]^{23}{ }_{\mathrm{D}}=+69.5\left(c 1.11 \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.35-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.71$ (dddd, $J=9.9,3.9,3.9$ and 1.2 $\mathrm{Hz}, 1 \mathrm{H}), 6.07(\mathrm{ddd}, J=9.9,1.8$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.21(\mathrm{~m}, 1 \mathrm{H})$, $3.25(\mathrm{dd}, J=14.1$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J$ $=8.1,5.4$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=3.9,3.9$ and 2.1 Hz 2 H$)$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 199.7, 144.0, 140.3, 129.7, 129.2, 128.4, 126.1, 69.2, 55.9, 34.5, 30.6, 25.6, 17.9, $-4.6,-4.9$. IR (neat) 2927, 1681, 1454, 1390, 1259, 1095, 835, 777, 698. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 72.10 ; \mathrm{H}, 8.92$. Found: C, 72.28; H, 8.79.

Reactions of Higher-Order Cyanocuprates onto 1. (3S,5S)-3-(tert-Butyldimethylsiloxy)-5-butylcyclohexanone. Typical procedure for the reaction of higher-order cyanocuprates on enones $\mathbf{1}$ and 2 (Table 1, entry 2): Into a flame-dried Schlenck tube flushed with argon were introduced $\mathrm{CuCN}(107 \mathrm{mg}, 1.2 \mathrm{mmol})$ and distilled THF (20 mL). The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ under magnetic agitation, and BuLi ($1.51 \mathrm{~mL}, 1.59 \mathrm{M}$ in n-hexane, 2.4 mmol) was slowly added. The resulting mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, and the enone $\mathbf{1}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}$) in a solution in THF $(1 \mathrm{~mL})$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$ (addition time: about 5 min). Stirring was continued for 30 min before quenching with saturated $\mathrm{NH}_{4} \mathrm{OH}$. Extraction with $\mathrm{Et}_{2} \mathrm{O}$, drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the solvent gave a colorless oil, cis:trans $=<2:>98$ by GC measurement; purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane: $\left.\mathrm{Et}_{2} \mathrm{O}=9: 1\right)$ yielded the title product as a colorless oil ($261 \mathrm{mg}, 0.92 \mathrm{mmol}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta 4.43-4.37$
$(\mathrm{m}, 1 \mathrm{H}), 2.49-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 2 \mathrm{H})$, $1.90(\mathrm{br} \mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.47$ (ddd, $J=13.5,11.4$ and 2.1 Hz , $1 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04$ ($\mathrm{s}, 3 \mathrm{H}$), 0.03 ($\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 210.4,68.9,49.5,47.9,38.9,36.0$, 32.2, 28.7, 25.5, 22.5, 17.8, 13.9, -5.1. IR (neat): 2929, 1718, 1464, 1253, 1101, 1045, 891, 837, $777 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$: C, 67.55; H, 11.34. Found: C, 67.81; H, 11.38.
(3S,5S)-3-(tert-Butyldimethylsiloxy)-5-methylcyclohexanone (Table 1, Entry 1). ${ }^{1} \mathrm{H}$ NMR: $\delta 4.43-4.37$ (m, 1H), 2.46-2.31 (m, 4H), $2.00-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.48$ (ddd, $J=13.5,11.4$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.02$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 210.4,69.0,49.7,49.1,40.9,27.6,25.6,21.8,17.8,-5.1$. IR (neat): 2954, 2929, 2856, 1718, 1251, 1116, 1088, 1043, 887, 837, $777 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 64.41 ; \mathrm{H}, 10.81$. Found: C, $64.51 ; \mathrm{H}$, 10.35.
(3S,5S)-3-(tert-Butyldimethylsiloxy)-5-\{1-[(3S)-3,7-dimethyl-6octenyl] cyclohexanone (Table 1, Entry 3). To a freshly prepared THF solution of (2-thienyl)cyanocuprate ${ }^{19}$ was added at $-78^{\circ} \mathrm{C}$ a THF $(1 \mathrm{~mL})$ solution of $(S)-\mathbf{1}$, and the resulting mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. The reaction was quenched and the product extracted and purified (60%, not optimized) in the usual way. ${ }^{1} \mathrm{H}$ NMR: $\delta 5.08$ (br $\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.35(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.27-$ $2.10(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{br}$ $\mathrm{t}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.20(\mathrm{~m}, 5 \mathrm{H}), 1.20-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.90-$ $0.78(\mathrm{~m}, 12 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 210.4,131.2$, 124.9, 68.9, 49.5, 48.1, 38.8, 36.9, 33.7, 33.6, 32.6, 32.3, 25.6, 25.55, $25.4,19.3,17.8,17.5,-5.1$. IR (neat): 2927, 1718, 1459, 1373, 1253, 1091, 1035, 892, 837, 804, 777, $692 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 72.07 ; \mathrm{H}, 11.55$. Found: C, 71.94; H, 11.55.
(3S,5S)-3-(tert-Butyldimethylsiloxy)-5-(2-butyl)cyclohexanone (Table 1, Entry 4). Mixture of two diastereoisomers at $\mathrm{CH}-\mathrm{CH}_{3} .{ }^{1} \mathrm{H}$ NMR: δ 4.48-4.39 (m, 2H), 2.44-2.20(m, 8H), 2.16-1.94 (m, 2H), 1.84$1.72(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.08(\mathrm{~m}, 8 \mathrm{H}), 0.91-0.81(\mathrm{~m}, 30 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$, $0.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 211.0,68.9,49.4,49.3,46.0,44.1,38.5$, $38.4,36.5,36.0,34.2,26.5,26.2,25.6,17.8,15.2,15.1,11.5,11.4$, -5.1, -5.1. IR (neat): 2958, 2858, 1718, 1461, 1251, 1103, 1076, 1047, 893, 837, $775 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 67.55$; H, 11.34. Found: C, 67.56; H, 11.23.
(3S,5S)-3-(tert-Butyldimethylsiloxy)-5-tert-butylcyclohexanone (Table 1, Entry 5). $\mathrm{Mp}=46-47^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 4.49-4.43(\mathrm{~m}$, 1 H), 2.49-2.40 (br d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.40-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.12-$ $1.88(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{ddd}, J=13.5,12.0$ and 1.8 Hz 1 H$), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 211.6,68.8,49.1$, $43.4,41.8,33.5,32.0,27.1,25.5,17.8,-5.1,-5.2$. IR (neat): 2954, 2856, 1701, 1471, 1365, 1253, 1095, 1034, 893, 837, $777 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 67.55 ; \mathrm{H}, 11.34$. Found: C, $67.45 ; \mathrm{H}, 11.15$.
(3S,5S)-3-(tert-Butyldimethylsiloxy)-5-phenylcyclohexanone (Table 1, Entry 6). ${ }^{1} \mathrm{H}$ NMR: $\delta 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.14$ (m, 3H), $4.55-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.55$ (dddd, $J=12.6,12.6,4.5$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.67-2.43(\mathrm{~m}, 4 \mathrm{H}), 2.14-1.93(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0,07(\mathrm{~s}, 3 \mathrm{H})$, 0.06 (s, 3H). ${ }^{13} \mathrm{C}$ NMR: δ 209.5, 144.2, 128.8, 126.8, 126.7, 68.8, 49.0, 48.7, 40.1, 38.0, 25.6, 17.9, -5.10, -5.13. IR (neat): 2954, 2856, 1718, 1251, 1095, 1037, 837, 777, $698 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}-$ Si: C, 71.00; H, 9.27. Found: C, 70.95; H, 8.94.
($3 S, 5 S$)-3-(tert-Butyldimethylsiloxy)-5-ethenylcyclohexanone (Table 1, Entry 7). ${ }^{1} \mathrm{H}$ NMR: $\delta 5.81$ (ddd, $J=16.8,10.5$ and $6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.07-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.39(\mathrm{~m} .1 \mathrm{H}), 3.03-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.51-$ $2.38(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{ddd}, J=14.0,11.5$ and $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.88$ $(\mathrm{m}, 1 \mathrm{H}), 1.65(\mathrm{ddd}, J=13.5,11.5$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05$ $(\mathrm{s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 209.4,141.4,113.7,68.6,49.3$, $46.5,38.5,36.0,25.6,17.8,-5.10,-5.13$. IR (neat): 2929, 2856, 1718, 1641, 1471, 1417, 1361, 1253, 1086, 1041, 891, 837, $777 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2}$ Si: C, $66.09 ; \mathrm{H}, 10.30$. Found: C, $66.14 ; \mathrm{H}, 10.80$.

Reactions of Lower-Order Cyanocuprates onto 1. (3S,5R)-3-(tert-Butyldimethylsiloxy)-5-butylcyclohexanone. Typical procedure for the reaction of lower-order cyanocuprates on enones $\mathbf{1}$ and 2 (Table 2, entry 3): Into a flame-dried Schlenck tube flushed with argon were introduced $\mathrm{CuCN}(107 \mathrm{mg}, 1.2 \mathrm{mmol})$ and dry $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The suspension was cooled to $-78{ }^{\circ} \mathrm{C}$ under magnetic agitation, and BuLi ($0.75 \mathrm{~mL}, 1.59 \mathrm{M}$ in n-hexane, 1.2 mmol) was slowly added. The resulting mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ (until complete
dissolution of the copper salt; the mixture can be warmed to $0{ }^{\circ} \mathrm{C}$ if needed), and $1(113 \mathrm{mg}, 0.5 \mathrm{mmol})$, in dry $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$, was added dropwise at $-78{ }^{\circ} \mathrm{C}$ (addition time: about 5 min). Stirring was continued for a further hour before quenching with saturated $\mathrm{NH}_{4} \mathrm{OH}$. Extraction with $\mathrm{Et}_{2} \mathrm{O}$, drying $\left(\mathrm{MgSO}_{4}\right)$, and evaporation of the solvent gave a colorless oil, cis:trans $=>99.5:<0.5$ by GC measurement; purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane: $\left.\mathrm{Et}_{2} \mathrm{O}=9: 1\right)$ yielded the title product as a colorless oil ($130 \mathrm{mg}, 0.455 \mathrm{mmol}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta 3.83$ (dddd, 10.6, 10.6, 4.8 and $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.59 (dddd, $J=$ $13.8,5.1,2.4$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.00(\mathrm{~m}$, $1 \mathrm{H}), 1.91(\mathrm{dd}, J=13.2$ and $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.44-$ $1.18(\mathrm{~m}, 7 \mathrm{H}), 0.93-0.78(\mathrm{~m}, 12 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 209.6, 69.6, 51.5, 46.9, 41.5, 36.1, 32.7, 28.6, 25.6, 22.5, $17.8,13.8,-4.96,-4.98$. IR (neat): 2929, 2857, 1716, 1685, 1471, 1376, 1255, 1105, 835, $777 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$: C, 67.55 ; H, 11.34. Found: C, 67.56; H, 11.23.
($3 S^{*}, 5 R^{*}$)-3-(tert-Butyldimethylsiloxy)-5-methylcyclohexanone (Table 2, Entry 1). ${ }^{1} \mathrm{H}$ NMR: $\delta 3.83$ (dddd, $J=10.8,10.8,4.6$ and $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56($ dddd, $J=13.5,4.8,2.1$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-$ $2.22(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{ddd}, J=13.0,13.0$ and 1.2 $\mathrm{Hz}, 1 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{ddd}, J=12.6,12.6$ and 10.8 Hz $1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR: $\delta 209.6,69.6,51.1,48.8,43.5,28.0,25.6,21.8,17.9,-4.93$, -4.96. IR (neat): 2958, 2856, 1683, 1471, 1390, 1367, 1255, 877, 835, $771 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$: C, 64.41; H, 10.81. Found: C, 64.90; H, 10.45.
$\left(3 S^{*}, 5 R^{*}\right)$-3-(tert-Butyldimethylsiloxy)-5-\{1-[(3S)-3,7-dimethyl-6octenyl]\}cyclohexanone (Table 2, Entry 6). ${ }^{1} \mathrm{H}$ NMR: $\delta 5.08$ (br t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (dddd, $J=10.5,10.5,4.8$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ (dddd, $J=13.5,5.1,2.1$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.11-$ $2.01(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.60-$ $1.45(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.22(\mathrm{~m}, 7 \mathrm{H}), 1.20-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.85(\mathrm{~m}$, $12 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 209.8,131.2,124.8$, 69.7, 51.6, 47.12, 46.95, 41.73, 41.55, 36.9, 33.9, 33.7, 33.1, 32.3, 25.6, $25.4,19.4,17.9,17.5,-4.88,-4.91$. IR (neat): 2954, 2927, 2856, $1716,1461,1376,1255,1105,1072,837,777 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 72.07$; H, 11.55. Found: C, $72.15 ; \mathrm{H}, 11.44$.
(3S*,5R*)-3-(tert-Butyldimethylsiloxy)-5-(2-butyl)cyclohexanone (Table 2, Entry 8). Mixture of two diastereoisomers at CH $\mathrm{CH}_{3} .{ }^{1} \mathrm{H}$ NMR: $\delta 3.88-3.75(\mathrm{~m}, 2 \mathrm{H}), 2.58$ (dddd, $J=13.5,4.8,2.1$ and $2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.30 (ddd, $J=13.5,10.8$ and $0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-$ $2.15(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{ddd}, J=13.5,13.5$ and $0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.88$ $(\mathrm{m}, 2 \mathrm{H}), 1.64-1.27(\mathrm{~m}, 8 \mathrm{H}), 1.25-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.94-0.78(\mathrm{~m}, 30 \mathrm{H})$, $0.05(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 210.2,210.1,70.0,69.9,51.6$, 44.7, 42.5, 39.3, 38.6, 38.4, 37.2, 36.9, 36.7, 26.5, 26.2, 25.6, 17.9, $15.2,14.8,11.63,11.57,-4.9$. IR (neat): $2958,1716,1464,1379$, 1253, 1097, 1072, 856, 835, $777 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$: C, 67.55; H, 11.34. Found: C, 67.36; H, 11.28.
($3 S^{*}, 5 R^{*}$)-3-(tert-Butyldimethylsiloxy)-5-tert-butylcyclohexanone (Table 2, Entry 9). ${ }^{1} \mathrm{H}$ NMR: $\delta 3.80$ (dddd, $J=10.2,10.2$, 4.2 and $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dddd}, J=13.5,4.8,2.1$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=13.2$ and 13.2 $\mathrm{Hz}, 1 \mathrm{H}), 1.47-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.85(\mathrm{~m}, 18 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 210.6,70.1,51.4,42.6,42.4,36.5,32.3,27.1$, 25.7, 17.9, $-4.88,-4.90$. IR (neat): 2956, 2858, 1716, 1369, 1255, 1103, 835, $777 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$: C, $67.55 ; \mathrm{H}, 11.34$. Found: C, 67.29; H, 11.27.
$\left(3 S^{*}, 5 R^{*}\right)$-3-(tert-Butyldimethylsiloxy)-5-phenylcyclohexanone (Table 2, Entry 10): ${ }^{1} \mathrm{H}$ NMR: $\delta 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.20$ (m, $3 \mathrm{H}), 4.00$ (dddd, $J=10.6,10.6,4.8$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (dddd, $J=$ $12.9,12.9,4.2$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2,71 (dddd, $J=13.5,5.1,2.1$ and 2.1 $\mathrm{Hz}, 1 \mathrm{H}), 2.57-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{ddd}, J=12.9$, 12.9 and $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0,072(\mathrm{~s}, 3 \mathrm{H}), 0.067(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 208.8,143.5,128.9,127.0,126.7,69.7,51.4,48.3,42.4,38.6$, 25.6, 17.9, -4.90, -4.93. IR (neat): 2959, 2858, 1716, 1251, 1099, 835, $698 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 71.00 ; \mathrm{H}, 9.27$. Found: C, 70.98; H, 9.25.

Elimination Reactions. Typical Procedure for the Elimination of trans-13 into 14 (Table 1, Entry 1). To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (3 mL) of trans-3-(tert-butyldimethylsiloxy)-5-methylcyclohexanone (201 mg , $0.83 \mathrm{mmol})$ was added at r.t. $\mathrm{DBU}(0.37 \mathrm{~mL}, 2.5 \mathrm{mmol})$. The reaction
was allowed to stand for 5 h at r.t., the solvent was evaporated in vacuo and the brown residue purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexane: $\mathrm{Et}_{2} \mathrm{O}=9: 1$), yielding the 5-methyl-2-cyclohexenone ($84 \mathrm{mg}, 92 \%$) as a colorless oil which was Kugelrohr-distilled before measurement of the optical rotation.

Typical Procedure for the Elimination of cis-13 into 14 in Basic Conditions (Table 2, Entry 1). To a dry DMF (2 mL) solution of cis-3-(tert-butyldimethylsiloxy)-5-methylcyclohexanone ($93 \mathrm{mg}, 0.39$ $\mathrm{mmol})$ was added $\mathrm{DBU}(0.17 \mathrm{~mL}, 1.16 \mathrm{mmol})$ at r.t., and the mixture was heated between 90 and $100^{\circ} \mathrm{C}$ for 1 h . The reaction was allowed to cool to r.t., taken up in 20 mL of $\mathrm{Et}_{2} \mathrm{O}$, and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times$ 5 mL). The combined organic layers were dried over MgSO_{4}, the solvent was evaporated, and the yield was measured by proton NMR.

Procedure for the Elimination of cis-13 into 14 in Acidic Conditions (Table 2, Entry 8). To a solution of cis-3-(tert-butyldi-methylsiloxy)-5-(2-butyl)cyclohexanone ($119 \mathrm{mg}, 0.42 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $p-\mathrm{TSA} \cdot \mathrm{H}_{2} \mathrm{O}(56 \mathrm{mg}, 5 \mathrm{~mol} \%)(p-\mathrm{TSA}=$ p-toluenesulfonic acid) at r.t.; the mixture was stirred at r.t. for 3 h and quenched with saturated NaHCO_{3}. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated, and the yield was measured by proton NMR (75\%). Mixture of diastereoisomers at $\mathrm{CH}-\mathrm{CH}_{3}:{ }^{1} \mathrm{H}$ NMR: $\delta 6.99$ (ddd, $J=10.0,6.0$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.98 (br d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{br} \mathrm{d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.25(\mathrm{~m}$, $1 \mathrm{H}), 2.25-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.07(\mathrm{~m}, 3 \mathrm{H}), 0.94-0.78(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 200.9,150.7,150.6,129.6,42.4,40.7,39.53,39.45,38.33$, $38.28,30.0,28.4,26.1,15.3,11.4,11.35$.

Synthesis of Optically Active 2,5-3,5-, and 2,3,5-Cyclohexenones. (2S,3S,5S)-2-Methyl-3-(tert-butyldimethylsiloxy)-5-(2-propyl)cyclohexanone (20aa). Major diastereoisomer: ${ }^{1} \mathrm{H}$ NMR: $\delta 4.25-4.20(\mathrm{~m}$, $1 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.01$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 212.0,74.4,49.9,45.3,39.1,36.5,32.2,25.6,19.5$, 19.3, 17.9, 11.3, -4.7, -5.2. IR (neat): 2958, 1718, 1464, 1289, 1254, 1055, 1014, 837, $775 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 67.55 ; \mathrm{H}$, 11.34. Found: C, 67.77; H, 11.27.
(2S,3S,5S)-2-Methyl-3-(tert-butyldimethylsiloxy)-5-(2-propenyl)cyclohexanone (20ab). Major diastereoisomer: ${ }^{1} \mathrm{H}$ NMR: $\delta 4.77$ (s, $1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.21(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{dddd}, J=12.6,12.6,3.6$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{dd}, J=13.5$ and 13.5 Hz , $1 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 210.9,147.6$, $109.7,74.13,49.8,46.3,39.8,38.6,25.6,20.5,17.9,11.2,-4.7,-5.2$. IR (neat): 2931, 1858, 1718 1462, 1377, 1255, 1119, 1070, 1033, 876, 837, $775 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 68.03 ; \mathrm{H}, 10.70$. Found: C, 67.60; H, 10.84.
(2S,3S,5S)-2-Methyl-3-(tert-butyldimethylsiloxy)-5-butylcyclohexanone (20ac). Major diastereoisomer: ${ }^{1} \mathrm{H}$ NMR: $\delta 4.22-4.16(\mathrm{~m}, 1 \mathrm{H})$, $2.46-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.48$ (ddd, $J=13.5,11.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.17(\mathrm{~m}, 6 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.85(\mathrm{t}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 211.5,74.4,50.0,48.1,39.9,36.3,33.1,28.7,25.6,22.5,17.9,13.9$, $11.3,-4.7,-5.2$. IR (neat): 2956, 2858, 1716, 1464, 1387, 1255, 1097, 1055, 1014, 837, $775 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 68.40 ; \mathrm{H}$, 11.48. Found: C, 68.48; H, 11.20.
(2S,3S,5S)-2-Benzyl-3-(tert-butyldimethylsiloxy)-5-butylcyclohexanone (20b). ${ }^{1} \mathrm{H}$ NMR: $\delta 7.32-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 1 \mathrm{H})$, $3.24(\mathrm{dd}, J=13.8$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=$ 13.8 and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{ddd}, J=13.2,4.2$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-$ $2.15(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{ddd}, J=12.0,12.0$ and 1.5 $\mathrm{Hz}, 1 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.00-0.82(\mathrm{~m}, 12 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR: $\delta 209.9,140.9,129.1,128.3,125.9,72.6,57.7$, $48.4,39.8,36.3,33.4,31.4,28.7,25.7,22.6,18.0,13.8,-4.1,-5.2$. IR (neat): 2927, 1718, 1457, 1255, 1060, 837, 775, $698 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}$: C, 73.74 ; H, 10.22. Found: C, $73.74 ; \mathrm{H}, 9.89$.
(5S)-2-Methyl-5-(2-propyl)-2-cyclohexenone (19aa). $[\alpha]^{23}{ }_{\mathrm{D}}=+$ $64.52\left(c 0.31, \mathrm{CHCl}_{3}\right), 97.9 \%$ ee, retention time $=5.2 \mathrm{~min}$, determined by chiral GC carrier $=2.0 \mathrm{~kg} / \mathrm{cm}^{2}$ at $110^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 6.74$ (br d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{br} \mathrm{dd}, J=15.9$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (ddd, J $=18.9,5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=15.9$ and $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-$ $2.00(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.56$ (d hept., $J=$ 6.6 and $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 200.9$,
$145.4,135.4,42.0,41.9,31.9,29.8,19.43,19.38,15.6$. IR (neat): 2960, 2875, 1676, 1466, 1367, 1250, 1146, 1109, 1076, 1049, $901 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$: C, $78.90 ; \mathrm{H}, 10.59$. Found: C, $78.80 ; \mathrm{H}, 10.79$.
(S)-Carvone [(S)-19ab]. To a solution of 20ab (106 mg, 0.375 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathrm{DBU}(0.17 \mathrm{~mL}, 1.13 \mathrm{mmol})$ at r.t. The mixture was allowed to stand at r.t. for 24 h before usual workup, yielding after purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes- $\mathrm{Et}_{2} \mathrm{O}$) (S)-19ab ($40 \mathrm{mg}, 71 \%$), whose NMR data were identical to those of the natural product. $[\alpha]^{23}{ }_{\mathrm{D}}=+51.43$ (c 0.25, $\left.\mathrm{CHCl}_{3}\right),{ }^{38} 93.0 \%$ ee (determined by chiral HPLC: flow $=0.6 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$ (hexane: $i-\mathrm{PrOH}=20: 1$): retention time $=15.5 \mathrm{~min}$).
(S)-2-Methyl-5-butyl-2-cyclohexenone (19ac). $[\alpha]^{23}{ }_{\mathrm{D}}=+45.59$ (c $0.68, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR: $\delta 6.70(\mathrm{br} \mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (dd, J $=12.3$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.75$ (br s, 3 H$), 1.39-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ $200.6,145.1,135.5,44.6,35.6,35.4,32.5,28.6,22.6,15.6,13.9$. IR (neat): 2956, 2924, 2858, 1716, 1452, 1363, 1252, 1119, $902 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 79.47$; H, 10.91. Found: C, 79.56; H, 10.86 .
(S)-2-Benzyl-5-butyl-2-cyclohexenone (19b). $[\alpha]^{23}{ }_{\mathrm{D}}=+33.0$ (c $\left.0.48, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $\delta 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 3 \mathrm{H})$, $6.53(\mathrm{br} \mathrm{d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.56(\mathrm{br} \mathrm{d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.89$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 199.6,145.9,139.7,139.4,129.2$, $128.4,126.1,44.8,35.4,35.3,35.1,32.5,28.5,22.5,13.9$. IR (neat): 2925, 1673, 1454, 1378, $698 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 84.25$; H, 9.15. Found: C, 84.30; H, 9.26.
(1RS,5S)-1-Hydroxy-1-methyl-5-butyl-2-cyclohexene (21). To a solution of $\mathbf{1 4}(76 \mathrm{mg}, 0.5 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added at -78 ${ }^{\circ} \mathrm{C}$ MeLi (1.40 M in $\mathrm{Et}_{2} \mathrm{O}, 0.43 \mathrm{~mL}, 0.6 \mathrm{mmol}$). The agitation was continued for 1 h , and the reaction was quenched with water. Extraction with $\mathrm{Et}_{2} \mathrm{O}$, drying $\left(\mathrm{MgSO}_{4}\right)$, and concentration in vacuo gave a residue purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes $-\mathrm{Et}_{2} \mathrm{O}$ gradient) to yield $21(80 \mathrm{mg}, 95 \%)$ as a colorless oil: diastereomeric ratio $=1: 1$. ${ }^{1} \mathrm{H}$ NMR: $\delta 5.77$ (ddd, $J=9.9,5.4$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.68-5.60$ (m, $2 \mathrm{H}), 5.59-5.53(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{br} d d, J=15.0$ and $15.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-$ $1.78(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 18 \mathrm{H}), 0.93-0.83$ (m, 6H). ${ }^{13} \mathrm{C}$ NMR: $\delta 134.6,133.2,129.5,127.0,70.8,68.3,45.6$, $44.3,36.3,36.2,33.1,32.0,30.0,29.7,28.9,28.6,22.8,22.7,14.0$. IR (neat): $3367,2924,1718,1653,1458,1375,1259,1156,1134,1078$, 995, 906, 800, $731 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 78.51$; H, 11.98. Found: C, 78.30; H, 11.98.
(R)-3-Methyl-5-butyl-2-cyclohexenone (22). To PCC (pyridinium chlorochromate) ($205 \mathrm{mg}, 0.95 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise $21(80 \mathrm{mg}, 0.48 \mathrm{mmol})$ in solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$. The resulting dark brown mixture was stirred at r.t. for 2 h , quenched with water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. Drying $\left(\mathrm{MgSO}_{4}\right)$, and concentration in vacuo gave an oil which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes $-\mathrm{Et}_{2} \mathrm{O}$) to yield $22(66 \mathrm{mg}, 83 \%)$ as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}=$ $-51.43\left(c 0.49, \mathrm{CHCl}_{3}\right), 97.9 \%$ ee (determined by chiral GC:carrier $=1.4$ at $115{ }^{\circ} \mathrm{C}$: retention time $\left.=14.7 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR: $\delta 5.85(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.44(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{br} \mathrm{d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-$ $1.94(\mathrm{~m}, 3 \mathrm{H}), 1.94(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.44-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 200.3,162.2,126.5,43.4,37.6,35.3,34.8,28.6$, 24.3, 22.6, 13.9. IR (neat): 2925, 2858, 1670, 1635, 1457, 1436, 1379, 1298, 1273, 1248, 1144, 1030, 887, 849, 814, $733 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 79.47$; $\mathrm{H}, 10.91$. Found: C, $79.41 ; \mathrm{H}, 10.88$.
(1RS,5S)-1-Hydroxy-1,2-dimethyl-5-(2-propyl)-2-cyclohexene(23aa). Obtained as a 6:1 mixture of diastereomers. Major diastereoisomer: ${ }^{1} \mathrm{H}$ NMR: $\delta 5.30(\mathrm{br} \mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.81$ $(\mathrm{dd}, J=9.6$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.72-1.54(\mathrm{~m}, 1 \mathrm{H})$, $1.48-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 0.90-0.70(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 138.7, 123.1, 72.6, 43.6, 39.2, 32.1, 29.2, 26.5, 19.7, 19.5, 16.6. IR (neat): $3369,2958,1639,1450,1367,1269,1119,1070,972,924$, $806 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 78.51 ; \mathrm{H}, 11.98$. Found: C, 78.28; H, 11.86.

[^12](1RS,5S)-1-Hydroxy-1,2-dimethyl-5-butyl-2-cyclohexene (23ac). Obtained as a $2: 1$ mixture of diastereoisomers. ${ }^{1} \mathrm{H}$ NMR: $\delta 5.51-$ $5.41(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.34(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}$, $1 \mathrm{H}), 1.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.70-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.16(\mathrm{~m}, 9 \mathrm{H}), 0.93-$ 0.85 (m, 3H). IR (neat): 3406, 2926, 1734, 1458, 1377, 1259, 1018, $896 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 79.06 ; \mathrm{H}, 12.16$. Found: C, 78.89; H, 12.27.
(S)-2,3-Dimethyl-5-(2-propyl)-2-cyclohexenone [24aa]: $[\alpha]^{23}{ }_{\mathrm{D}}=$ -114.5 (c 2.61, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR: $\delta 2.48$ (ddd, $J=15.9,3.6$ and 1.5 $\mathrm{Hz}, 1 \mathrm{H}), 2.28$ (br dd, $J=18.0$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{br} \mathrm{d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.04$ (dd, $J=15.6$ and $13.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.92 (br s, 3 H), $1.83-$ $1.68(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.53(\mathrm{~d}$ hept, $J=6.6$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 0.91 (br d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{br} \mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 200.1,154.9,130.7,41.2,40.5,36.7,31.9,21.5,19.4,19.3,10.6$. IR (neat): $2960,1664,1466,1431,1381,1340,1313,1144,1124,1086$, $704,663 \mathrm{~cm}^{-1}$. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 79.47 ; \mathrm{H}, 10.91$. Found: C, 79.56 ; H, 10.86.
(S)-2,3-Dimethyl-5-butyl-2-cyclohexenone (24ac). $[\alpha]^{23}{ }_{D}=-$ 83.33 (c $0.55, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR: $\delta 2.49(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (br d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.91$ (br s, 3H), 1.74 (br $\mathrm{s}, 3 \mathrm{H}), 1.39-1.19(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 199.8, 154.6, 130.8, 43.9, 39.4, 35.5, 34.2, 28.6, 22.6, 21.4, 13.9, 10.6. IR (neat): 2956, 2924, 2858, 1666, 1537, 1448, 1379, 1319, 1132, 1084, $733 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 79.94 ; \mathrm{H}, 11.18$. Found: C, 80.39; H, 11.36.

Synthesis of Penienone and Penihydrone. Hept-3-en-1-yne (27). $\mathrm{Bp}_{760}=91{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 6.24(\mathrm{dt}, J=16.5$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ $(\mathrm{dtd}, J=16.5,1.8$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (dtd, $J=7.2,7.2$ and $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{tq}, J=7.5$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 146.8,108.6,82.6,75.5,34.9$, 21.6, 13.4. ${ }^{32}$
(+)-(2R,3R,5R)-2-Hydroxymethyl-3-(1,3-heptadienyl)-5-(tert-butyldimethylsiloxy)cyclohexanone (28). Into a flame-dried Schlenck tube flushed with argon and shielded into aluminum foil were introduced $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(516 \mathrm{mg}, 2 \mathrm{mmol})$ and freshly distilled THF (2 mL). To the slurry was added a THF (1 mL) solution of hept-3-ene-1-yne ${ }^{32}$ (132 $\mathrm{mg}, 1.4 \mathrm{mmol}$), and the mixture was stirred at r.t. until a deep-orange coloration appeared (about $15-20 \mathrm{~min}$). Then, the reaction flask was cooled to $-78^{\circ} \mathrm{C}, \mathrm{MeLi}\left(3.0 \mathrm{~mL}, 1.40 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 4.2 \mathrm{mmol}\right)$ was added via syringe over a period of 5 min , and the resulting bright orange mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$. Separately, anhydrous LiCl $(118 \mathrm{mg}, 2.8 \mathrm{mmol})$ and $\mathrm{CuCN}(126 \mathrm{mg}, 1.4 \mathrm{mmol})$ were introduced into a dry round-bottom flask purged with argon and dry THF (2 mL) was added; the resulting suspension was energetically stirred at room temperature until complete dissolution of the salts (5 min); the mixture was then cooled to $-78^{\circ} \mathrm{C}$ and slowly transferred via cannula into the Schlenck tube containing the vinylic zirconocene species. The resulting brown-orange mixture was stirred energetically for 5 min at $-78^{\circ} \mathrm{C}$, and $(R)-\mathbf{1}(114 \mathrm{mg}, 0.5 \mathrm{mmol})$ in solution in THF $(1 \mathrm{~mL})$ was added via syringe over a period of 10 min . The mixture was stirred for 40 min at $-78^{\circ} \mathrm{C}$, and an ethereal solution of formaldehyde ${ }^{39}$ (large excess) was slowly added. After 1 h at $-78^{\circ} \mathrm{C}$, the cooling bath was removed, saturated $\mathrm{NH}_{4} \mathrm{OH}(5 \mathrm{~mL})$ then water $(10 \mathrm{~mL})$ were added, and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered through a pad of Celite $(3 \times 5$ $\mathrm{cm})$ and again through a pad of silica $(3 \times 5 \mathrm{~cm})$ which was finally washed with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. Evaporation of the solvent gave a colorless oil which upon analysis by proton NMR showed the presence of a single diastereoisomer of the desired product. Purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes- $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ yielded the title compound (120 $\mathrm{mg}, 0.34 \mathrm{mmol}, 68 \%)$ as white crystals: $\mathrm{mp}=54-55^{\circ} \mathrm{C} .[\alpha]^{23}{ }_{\mathrm{D}}=+$ 13.3 (c $0.1125 \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR: $\delta 6.07(\mathrm{dd}, J=14.5$ and 10.5 Hz , $1 \mathrm{H}), 5.95(\mathrm{ddt}, J=14.5,10.5$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dt}, J=14.5$ and $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=14.5$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.39(\mathrm{~m}, 1 \mathrm{H})$, $3.78-3.64(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{dddd}, J=11.9,11.9,9.0$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.75-2.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=13.8$ and $3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (ddd, J $=13.8,3.3$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=11.0,6.2$ and $3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.04(\mathrm{dt}, J=7.2$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{dm}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ $(\mathrm{ddd}, J=12.9,12.0$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{tq}, J=7.5$ and 7.5 Hz ,
(39) Stork, G.; d'Angelo, J. J. Am. Chem. Soc. 1974, 96, 7114-7116.
$2 \mathrm{H}), 0.9(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR: $\delta 212.4,134.6,132.5,131.9,129.7,69.0,60.5,56.2,49.7$, $39.6,38.6,34.6,25.5,22.3,17.8,13.6,-5.11,-5.14$. IR (KBr) 3567, 3307, 2927, 1706, 1459, 1344, 1251, 1091, 1053, 987, 912, 838, 777. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}$: C, 68.13; H, 10.29. Found: C, 67.90; H, 10.21.

Penienone (25). To a solution of $28(60 \mathrm{mg}, 0.17 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{DBU}(0.08 \mathrm{~mL}, 0.51 \mathrm{mmol})$ at r.t., and the resulting mixture allowed to stand for 12 h at r.t. Evaporation of the solvent and purification of the brown residue by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes $\left.-\mathrm{Et}_{2} \mathrm{O}\right)$ gave $25(28 \mathrm{mg}, 0.126 \mathrm{mmol}, 74 \%)$ as white crystalline plates. $[\alpha]^{23}{ }_{\mathrm{D}}=-47.5(c 0.3, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR: $\delta 6.97$ (ddd, $J=10.0,5.7$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.15-5.93(\mathrm{~m}, 3 \mathrm{H}), 5.65(\mathrm{dt}, J=$ 14.1 and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=14.7$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.83$ $(\mathrm{m}, 1 \mathrm{H}), 3.76-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{br} \mathrm{dd}, J=8.3$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.74-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{ddd}, J=19.5,5.4$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-$ $2.25(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{dt}, J=7.4$ and $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{tq}, J=7.4$ and $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 202.5,150.1,135.1$, 132.7, 131.4, 129.6, 129.5, 60.8, 52.7, 40.8, 34.6, 32.9, 22.2, 13.6. IR (KBr) 2929, 1670, 1392, 1097, 1045, 995, 725. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 76.33; H, 9.15. Found: C, 76.24; H, 9.31.

Penihydrone (26). Into a dry plastic vessel purged with argon were introduced 18 ($60 \mathrm{mg}, 0.17 \mathrm{mmol}$), dry acetonitrile $(10 \mathrm{~mL})$, and pyridine $(0.5 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{HF} \cdot$ pyridine $(0.5 \mathrm{~mL})$ was added. The resulting mixture was allowed to stand for 12 h at r.t. The reaction was quenched with saturated NaHCO_{3}, the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried $\left(\mathrm{MgSO}_{4}\right)$, and concentration in vacuo gave a pale brown oil which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes $\left.-\mathrm{Et}_{2} \mathrm{O}\right)$ to yield $\mathbf{2 6}(25 \mathrm{mg}, 0.105 \mathrm{mmol}$, 62%) as white needles (recrystallization: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). $[\alpha]^{23}{ }_{\mathrm{D}}=+$ 4.5 (c 0.3, MeOH). ${ }^{1} \mathrm{H}$ NMR: $\delta 6.08(\mathrm{dd}, J=14.1$ and $10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.97(\mathrm{ddt}, J=14.7,10.5$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dt}, J=14.4$ and 7.2 $\mathrm{Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=14.7$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.45(\mathrm{~m}, 1 \mathrm{H})$, $3.81-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.60$ $(\mathrm{dd}, J=14.4$ and $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=14.4,2.4$ and 2.4 Hz , $1 \mathrm{H}), 2.44-2.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.80(\mathrm{~m}, 3 \mathrm{H})$, $1.82(\mathrm{ddd}, J=13.4,12.3$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{tq}, J=7.2$ and 7.2 $\mathrm{Hz}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta: 212.6,134.8,132.3$, $131.9,129.6,68.5,60.1,56.3,49.1,38.60,38.55,34.6,22.3,13.6$. IR (KBr) 3394, 2956, 2927, 1701, 1373, 1072, 983, 962. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 70.56; H, 9.30. Found: C, 70.27; H, 9.13.

Synthesis of (R)-Carvone. ($1 S, 2 R, 3 R S, 5 R$)-1-(tert-Butyldimeth-ylsiloxy)-2-methyl-3-hydroxy-5-(2-propenyl)cyclohexane (reduced20ab). To an ice-cooled solution of 20ab ($265 \mathrm{mg}, 0.94 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(18 \mathrm{mg}, 0.47 \mathrm{mmol})$ in several portions. The ice bath was then removed and the mixture allowed to stir for 1 h at r.t. After dilution with water $(5 \mathrm{~mL})$, the product was extracted with AcOEt and the combined organic layers were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$; evaporation of the solvent gave an oil which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes $\left.-\mathrm{Et}_{2} \mathrm{O}\right)$ to yield the reduced-20ab ($238 \mathrm{mg}, 89 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR: δ 4.73 (br s, 1H), 4.71 (br s, 1H), 4.01 (br s, 1H), 3.83 (br s, 2H), 2.67 (dddd, $J=12.6,12.6,2.7$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H}) 1.96-$ $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.30(\mathrm{~m}, 2 \mathrm{H})$, $1.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ
149.6, 108.9, 74.2, 72.3, 39.1, 38.9, 38.2, 31.8, 25.6, 21.0, 17.8, 15.6, $-4.9,-5.3$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 67.54 ; \mathrm{H}, 11.34$. Found: C, 67.36; H, 11.28.
(2R,3RS,5R)-2-Methyl-3-(benzyloxy)-5-(2-propenyl)cyclohexanone (30). To an ice-cooled solution of $29(238 \mathrm{mg}, 0.84 \mathrm{mmol})$ in THF (2 mL) was added NaH (55% dispersion in oil, $55 \mathrm{mg}, 1.26 \mathrm{mmol}$) in one portion. The resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, and benzyl bromide ($0.15 \mathrm{~mL}, 1.26 \mathrm{mmol}$) was added followed by $\mathrm{NaI}(14 \mathrm{mg}, 0.09 \mathrm{mmol})$ and dry DMF $(0.1 \mathrm{~mL})$; the agitation was carried on for 12 h at r.t. Hydrolysis at $0^{\circ} \mathrm{C}$, extraction with $\mathrm{Et}_{2} \mathrm{O}$, drying $\left(\mathrm{MgSO}_{4}\right)$, and evaporation of the volatiles gave the crude benzyl ether which was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and treated at $0^{\circ} \mathrm{C}$ with a methanolic hydrochloric acid solution $(0.5 \mathrm{M}, 1.68 \mathrm{~mL}, 0.84 \mathrm{mmol})$. The mixture was allowed to stir for 4.5 h at r.t. before quenching at 0 ${ }^{\circ} \mathrm{C}$ with saturated NaHCO_{3}. The mixture was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation in vacuo gave a residue which was passed through a pad of silica (elution hexane: $\mathrm{Et}_{2} \mathrm{O}$ $=1: 9$) to give the (benzyloxy)cyclohexanol, pure enough to be used in the next step.

To the crude cyclohexanol ($197 \mathrm{mg}, 0.76 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 $\mathrm{mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.32 \mathrm{~mL}, 2.27 \mathrm{mmol})$ was slowly added at $-10^{\circ} \mathrm{C}$ a DMSO (2 mL) solution of $\mathrm{SO}_{3} \cdot \operatorname{Pyr}(361 \mathrm{mg}, 2.27 \mathrm{mmol})$; the mixture was allowed to stir at r.t. for 10 h . Dilution with water, extraction with $\mathrm{Et}_{2} \mathrm{O}$, drying $\left(\mathrm{MgSO}_{4}\right)$, and concentration in vacuo gave an oil which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexane $\left.-\mathrm{Et}_{2} \mathrm{O}\right)$ to give 30 (154 mg, 71\% overall) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.38-7.23$ $(\mathrm{m}, 5 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{dddd}, J=12.6,12.6,3.6$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$, $1.65(\mathrm{dd}, J=13.2$ and $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 210.5,147.4,138.5,128.4,127.6,127.5,109.9,79.8,70.7$, 49.2, 46.3, 39.6, 33.3, 20.5, 10.8.
(\boldsymbol{R})-Carvone $[(\boldsymbol{R})-\mathbf{1 9 a b}]: p-\mathrm{TSA} \cdot \mathrm{H}_{2} \mathrm{O}(133 \mathrm{mg}, 0.70 \mathrm{mmol})$ was added in one portion at r.t to a solution of $\mathbf{3 0}(154 \mathrm{mg}, 0.60 \mathrm{mmol})$ in benzene $(5 \mathrm{~mL})$. The mixture was allowed to stand for 6 h at r.t. before quenching with saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$; the product was extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; hexane $-\mathrm{Et}_{2} \mathrm{O}$) to give (S)-19ab ($50 \mathrm{mg}, 78 \%$) as a colorless oil. 96.2% ee (determined by chiral HPLC, flow $=0.6 \mathrm{~mL} / \mathrm{min}$ (hexane: $i-\mathrm{PrOH}$ $=20: 1$) retention time $=13.7 \mathrm{~min}$).

Acknowledgment. We are grateful to DAISO Co., Ltd., for the generous supply of optically active (R) - and $(S)-\mathbf{3}$ and to the Japan Society for the Promotion of Science (JSPS) for a grant to G.P-J.H.

Supporting Information Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{1}, \mathbf{2 a}, \mathbf{b}, \mathbf{7}$, and $\mathbf{1 2 a}, \mathbf{b}, 1,4$-addition products reported in Table 1 and Table 2, products reported in Scheme 7 and Scheme 8, and products 25, 26, and 28 (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA9843122

[^0]: (1) For some recent synthetic implications of carvone in organic synthesis, see: Srikrishna, A.; Reddy, T. J.; Kumar, P. P. J. Chem. Soc., Perkin Trans. 1 1998, 3143-3144 and references therein. For pulegone, see: Chen, C. Y.; Nagumo, S.; Akita, H. Chem. Pharm. Bull. 1996, 44, 2153-2156.
 (2) Chiral cyclohexenones can be obtained by derivatization of optically active natural products according to multistep sequences. (a) From sugars, see: Ferrier, R. J.; Middleton, S. Chem. Rev. 1993, 93, 2779-2831 and references therein. (b) From pinene, see: Chapuis, C.; Brauchli, R.; Thommen, W. Helv. Chim. Acta 1993, 76, 535-544 and references therein. (c) From quinic acid, see: Barros, M. T.; Maycock, C. D.; Ventura, M. R. J. Org. Chem. 1997, 62, 3984-3988 and references therein. (d) From quebrachitol, see: Barton, D. H. R.; Bath, S.; Billington, D. C.; Gero, S. D.; Quiclet-Sire, B.; Samadi, M. J. Chem. Soc., Perkin Trans. 1 1995, 15511558 and references therein.

[^1]: (3) Another approach is the kinetic resolution of a racemic mixture of starting materials where enzymes have been the mostly used see: (a) Polla, M.; Frejd, T. Tetrahedron 1991, 47, 5883-5894. (b) Miyaoka, H.; Sagawa, S.; Inoue, T.; Nagaoka, H.; Yamada, Y. Chem. Pharm. Bull. 1994, 42, 405407. (c) Weissfloch, A. N. E.; Kazlauskas, R. J. J. Org. Chem. 1995, 60, 6959-6969 and references therein. Resolution can be also achieved by using organometallics species: (d) Trost, B. M.; Organ, M. G. J. Am. Chem. Soc. 1994, 116, 10320-10321. (e) Hashiguchi, S.; Fujii, A.; Haack, K. J.; Matsumura, K.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 288-290. For other examples of resolution see: (f) Gorthey, L. A.; Vairamani, M.; Djerassi, C. J. Org. Chem. 1985, 50, 4173-4182 and references therein.
 (4) Enantioselective syntheses of 2-cyclohexenones have been reported: (a) Based on an asymmetric Diels-Alder reaction: Wada, E.; Yasuoka, H.; Kanemasa, S. Chem. Lett. 1994, 1637-1640; Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 1997, 119, 7165-7166 and references therein. (b) Based on amino acid-catalysed aldolization: Fuji, K. Chem. Rev. 1993, 93, 2037-2066 and references therein. (c) Enantioselective deprotonation: O'Brien, P.; Poumellec, P. Tetrahedron Lett. 1996, 37, 8057-8058. (d) The most efficient and general up-to-date method for synthesizing optically active 2-cyclohexenones has been developed by Meyers using optically active bicyclic lactams, see: Romo, D.; Meyers, A. I. Tetrahedron 1991, 47, 9503-9569. Schwarz, J. B.; Devine, P. N.; Meyers, A. I. Tetrahedron 1997, 53, 8795-8806 and references therein.
 (5) (a) Asaoka, M.; Shima, K.; Takei, H. Tetrahedron Lett. 1987, 28 , 5669-5672. Asaoka, M.; Takei, H. J. Synth. Org. Chem. Jpn. 1990, 48, 216-228 (review in Japanese). (b) Takano, S.; Higashi, Y.; Kamikubo, T.; Moriya, M.; Ogasawara, K. Synthesis 1993, 948-950. Ogasawara, K. Pure Appl. Chem. 1994, 66, 2119-2122.

[^2]: (6) Suemune, M.; Takahashi, M.; Maeda, S.; Xie, Z.-F.; Sakai, K. Tetrahedron: Asymmetry 1990, 1, 425-428.
 (7) Dumortier, L.; Carda, J.; Van der Eycken, J.; Snatzke, G.; Vandewalle, M. Tetrahedron: Asymmetry 1991, 2, 789-792.
 (8) Portions of this work have been communicated: Hikichi, S.; Hareau, G. P-J.; Sato, F. Tetrahedron Lett. 1997, 38, 8299-8302. Hareau, G. P-J.; Hikichi, S.; Sato, F. Angew. Chem., Int. Ed. Engl. 1998, 37, $2099-2101$.

[^3]: (9) Kasatkin, A.; Sato, F. Tetrahedron Lett. 1995, 36, 6079-6082. Kasatkin, A.; Kobayashi, K.; Okamoto, S.; Sato, F. Tetrahedron Lett. 1996, 37, 1849-1852. Lee, J.; Kang, C. H.; Kim, H.; Cha, J. K. J. Am. Chem. Soc. 1996, 118, 291-292. Sun U, J.; Lee, J.; Cha, J. K. Tetrahedron Lett. 1997, 38, 5233-5236.
 (10) Ito, Y.; Fujii, S.; Saegusa, T. J. Org. Chem. 1976, 41, 2073-2074. Ito, Y.; Fujii, S.; Nakatsuka, M.; Kawamoto, F.; Saegusa, T. Org. Synth. 1988 (Collect. Vol. 6), 327-333.
 (11) Seebach, D.; Wasmuth, D. Helv. Chim. Acta 1980, 63, 197-200. Frater, G.; Müller, U.; Günther, W. Tetrahedron 1984, 40, 1269-1277.
 (12) Kitamura, M.; Ohkuma, T.; Takaya, H.; Noyori, R. Tetrahedron Lett. 1988, 29, 1555-1556.
 (13) The conjugate addition of organocuprates onto 5-substituted-2cyclohexenones yields generally a very high proportion of the trans-adduct; see the following reviews and references therein: Yamamoto, Y. Methoden Org. Chem. (Houben-Weyl), Engl. Ed. 1995, E21b, 2041-2067 (Helmchen, G., Hoffman, R. W., Mulzer, J., Shauman, E., Eds.). Lipshutz, B. H. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Tokyo, 1991; Vol. 1, pp 107-138. Kozlowski, J. A. Ibid. Vol. 4, pp 169-198. Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135631.

[^4]: (14) $\mathrm{RCu}(\mathrm{CN}) \mathrm{Li}$ (lower-order) and $\mathrm{R}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}$ (higher-order) indicate that the reagents have been prepared stoichiometrically by mixing CuCN and RLi in the $1: 1$ and $1: 2$ ratios, respectively, see: Kronenburg, C. M. P.; Jastrzebski, J. T. B. H.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 1998, 120, 9688-9689 and references therein. See also: Organocopper Reagents: A Practical Approach; Taylor, R. J. K., Ed.; Oxford University Press: Oxford, U.K., 1994. The terms "1:1 cyanocuprates" and " $1: 2$ cyanocuprates" are now preferred to "lower-" and "higher-order cyanocuprates" nevertheless, for convenience, we have conserved the old terminology.
 (15) A selectivity of $92: 8$ in favor of the cis isomer has been reported on a 4-oxy-substituted spirocyclohexenone: Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26, 6015-6018. cis-Michael-type addition has been observed on 4-oxy-substituted-2-cyclohexenone: Jeroncic, L. O.; Cabal, M. P.; Danishefsky, S. J. J. Org. Chem. 1991, 56, 387-395.
 (16) ee calculated from chiral GC or HPLC: chiral GC (Chirasil-DEX/ Chrompack, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}, \mathrm{DF}=0.25$); chiral HPLC (Daicel Chiralcel $\mathrm{OB}-\mathrm{H})$.
 (17) The reductive elimination of the cis-adduct of $\mathbf{1 3}$ does not proceed easily at r.t. so that the treatment at r.t. with DBU of a cis/trans mixture of $\mathbf{1 3}$ can result in a kinetic resolution of the starting material, thus affording the eliminated product 14 with high ee.

[^5]: (18) (R)-(-)-5-Butyl-2-cyclohexenone: $[\alpha]_{\mathrm{D}}=-51.2\left(c 1.40 ; \mathrm{CHCl}_{3}\right)$: Asaoka, M.; Takenouchi, K.; Takei, H. Chem. Lett. 1988, 921-922. (R)-(-)-5-Methyl-2-cyclohexenone: $[\alpha]_{\mathrm{D}}=-90.2\left(c 0.8 ; \mathrm{CHCl}_{3}\right)$: Allinger, N. L.; Riew, C. K. J. Org. Chem. 1975, 40, 1316-1321 and ref 3f. (R)-(-)-5-Phenyl-2-cyclohexenone: $[\alpha]_{\mathrm{D}}=-46.4$ (c 5.0; CHCl_{3}): Asaoka, M.; Shima, K.; Fujii, N.; Takei, H. Tetrahedron 1988, 44, 4757-4766.
 (19) Lipshutz, B. H.; Koerner, M.; Parker, D. A. Tetrahedron Lett. 1987, 28, 945-948
 (20) For the solvent effect in the conjugate addition of lower-order cyanocuprates onto 2-cyclohexenones, see: Bertz, S. H.; Dabbagh, G. Tetrahedron 1989, 45, 425-434.

[^6]: (21) Taking advantage of one of the reviewer's comments, we include the following note: the reaction of $\mathrm{R}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}$ onto an enone produces, after transfer of the R group, $\mathrm{RCu}(\mathrm{CN}) \mathrm{Li}$, which, however, seems to be kinetically less reactive than $\mathrm{R}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}$. We have indeed observed that, in the case where the reaction with $\mathrm{R}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}(\mathrm{R}=\mathrm{Bu})$ in THF actually was complete after few minutes at $-78{ }^{\circ} \mathrm{C}$, the reaction of $\mathrm{RCu}(\mathrm{CN}) \mathrm{Li}(\mathrm{R}$ $=\mathrm{Bu})$ in $\mathrm{Et}_{2} \mathrm{O}$ required 1 h at $-78^{\circ} \mathrm{C}$ and in some cases, such as $\mathrm{R}=\mathrm{Me}$, s-Bu, t-Bu and Ph , a gradual elevation of the temperature to $0^{\circ} \mathrm{C}$ (see Table 2) to go to completion.
 (22) For chiral-5-substituted-2-cyclohexenones, see: Kuwahara, S.; Mori, K. Tetrahedron 1990, 46, 8075-8082. Semmelhack, M. F.; Schmalz, H.G. Tetrahedron Lett. 1996, 37, 3089-3092. See also refs 3f and 5-7.
 (23) Danishefsky, S. J.; Simoneau, B. J. Am. Chem. Soc. 1989, 111, 2599-2604.

[^7]: (24) Corey, E. J.; Hannon, F. J.; Boaz, N. W. Tetrahedron 1989, 45, 545-555. Corey, E. J.; Hannon, F. J. Tetrahedron Lett. 1990, 31, 13931396.
 (25) For some recent progress on the mechanism of the 1,4-addition of cuprates on enones, see: Krauze, N. J. Org. Chem. 1992, 57, 3509-3512. Vellekoop, A. S.; Smith, R. A. J. J. Am. Chem. Soc. 1994, 116, 29022913. Snyder, J. P. J. Am. Chem. Soc. 1995, 117, 11025-11026. Nilsson, K.; Ullenius, C.; Krause, N. J. Am. Chem. Soc. 1996, 118, 4194-4195. Nakamura, E.; Mori, S.; Morokuma K. J. Am. Chem. Soc. 1997, 119, 49004910 and references therein.

[^8]: (26) Asaoka, M.; Aida, T.; Sonoda, S.; Takei, H. Tetrahedron Lett. 1989, 30, 7075-7078.
 (27) Caine, D.; Venkataramu, S. D.; Kois, A. J. Org. Chem. 1992, 57, 2960-2963.

[^9]: (28) Agami, C.; Platzer, N.; Sevestre, H. Bull. Soc. Chim. Fr. 1987, 124, 358-360.
 (29) Boehler, M. A.; Konopelski, J. P. Tetrahedron 1991, 47, 45194538.
 (30) Kim, H.-d.; Shirai, R.; Kawasaki, H.; Nakajima, M.; Koga, K. Heterocycles 1990, 30, 307-310.
 (31) Kimura, Y.; Mizuno, T.; Shimada, A. Tetrahedron Lett. 1997, 38, 469-472.
 (32) Lipshutz, B. H.; Ellsworth, E. L. J. Am. Chem. Soc. 1990, 112, 7440-7441.

[^10]: (33) Carpita, A.; Neri, D.; Rossi, R. Gazz. Chim. Ital. 1987, 117, 481489.
 (34) For copper enolates, see: Posner, G. H.; Lentz, J. Am. Chem. Soc. 1979, 101, 934-946. Pagenkopf, B. L.; Krüger, J.; Stojanovic, A.; Carreira, E. M. Angew. Chem., Int. Ed. Engl. 1998, 37, 3124-3126 and references therein.

[^11]: (36) N, N^{\prime}-(Dimethylpropylene)urea (DMPU) was employed as a substitute for the highly toxic HMPA commonly used for this reaction, see: The Encyclopedia of Reagents in Organic Synthesis; Paquette, L., Ed., J. Wiley and Sons: New York, 1995; pp 2123-2127 and references therein.
 (37) Alexakis, A.; Cahiez, G.; Normant, J. F. Synthesis 1979, 826-830.

[^12]: (38) $[\alpha]^{20}{ }_{\mathrm{D}}=-62.6$ for (R)-carvone and +61.2 for (S)-carvone: Merck Index, 12th ed.; Merck and Co., Inc.: Whitehouse Station, NJ, 1996. [$\alpha]_{\mathrm{D}}$ $=-61$ and +54 , respectively: Aldrich Catalog Handbook of Fine Chemicals; Sigma-Aldrich Co.: Milwaukee, WI, 1998-1999.

